Exciton-Polaritons in CsPbBr3 Crystals Revealed by Optical Reflectivity in High Magnetic Fields and Two-Photon Spectroscopy

被引:8
作者
Yakovlev, Dmitri R. [1 ]
Crooker, Scott A. [2 ]
Semina, Marina A. [3 ]
Rautert, Janina [1 ]
Mund, Johannes [1 ]
Dirin, Dmitry N. [4 ,5 ]
Kovalenko, Maksym V. [4 ,5 ]
Bayer, Manfred [1 ]
机构
[1] Tech Univ Dortmund, Experimentelle Phys 2, D-44227 Dortmund, Germany
[2] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA
[3] Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia
[4] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Lab Inorgan Chem, CH-8093 Zurich, Switzerland
[5] Empa Swiss Fed Labs Mat Sci & Technol, Dept Adv Mat & Surfaces, Lab Thin Films & Photovolta, CH-8600 Dubendorf, Switzerland
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2024年 / 18卷 / 03期
关键词
CsPbBr3; exciton binding energies; exciton-polaritons; high magnetic fields; Lande factors; perovkite semiconductors; two-photon spectroscopies; BINDING-ENERGY; ELECTRONIC-STRUCTURE; EFFECTIVE MASSES; SINGLE-CRYSTALS; CSPBCL3; METHYLAMMONIUM; SEMICONDUCTORS; PEROVSKITES; MONOLAYER; CONSTANT;
D O I
10.1002/pssr.202300407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cesium lead bromide (CsPbBr3) is a representative material of the emerging class of lead halide perovskite semiconductors that possess remarkable optoelectronic properties. Its optical properties in the vicinity of the bandgap energy are greatly contributed by excitons, which form exciton polaritons due to strong light-matter interactions. Exciton-polaritons in solution-grown CsPbBr3 crystals are examined by means of circularly polarized reflection spectroscopy measured in high magnetic fields up to 60 T. The excited 2P exciton state is measured by two-photon absorption. Comprehensive modeling and analysis provides detailed quantitative information about the exciton-polariton parameters: exciton binding energy of 32.5 meV, oscillator strength characterized by longitudinal-transverse splitting of 5.3 meV, damping of 6.7 meV, reduced exciton mass of 0.18m(0), exciton diamagnetic shift of 1.6 mu eV T-2, and exciton Land & eacute; factor g(x)= +2.35. It is shown that the exciton states can be described within a hydrogen-like model with an effective dielectric constant of 8.7. From the measured exciton longitudinal-transverse splitting, Kane energy of E-p = 15 eV is evaluated, which is in reasonable agreement with values of 11.8-12.5 eV derived from the carrier effective masses.
引用
收藏
页数:8
相关论文
共 60 条
[21]   OPTICAL-PROPERTIES AND ELECTRONIC-STRUCTURE OF CSPBCL3 AND CSPBBR3 [J].
HEIDRICH, K ;
KUNZEL, H ;
TREUSCH, J .
SOLID STATE COMMUNICATIONS, 1978, 25 (11) :887-889
[22]   MAGNETOABSORPTION OF THE LOWEST EXCITON IN PEROVSKITE-TYPE COMPOUND (CH3NH3)PBI3 [J].
HIRASAWA, M ;
ISHIHARA, T ;
GOTO, T ;
UCHIDA, K ;
MIURA, N .
PHYSICA B, 1994, 201 :427-430
[23]   Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3-x through Halide Exchange [J].
Hoffman, Jacob B. ;
Schleper, A. Lennart ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (27) :8603-8611
[24]   THEORETICAL AND EXPERIMENTAL EFFECTS OF SPATIAL DISPERSION ON OPTICAL PROPERTIES OF CRYSTALS [J].
HOPFIELD, JJ ;
THOMAS, DG .
PHYSICAL REVIEW, 1963, 132 (02) :563-&
[25]   ON SOME OBSERVABLE PROPERTIES OF LONGITUDINAL EXCITONS [J].
HOPFIELD, JJ ;
THOMAS, DG .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1960, 12 (3-4) :276-284
[26]   OPTICAL AND PHOTOELECTRONIC STUDIES OF CSPBCL3 AND CSPBBR3 [J].
ITO, H ;
ONUKI, H ;
ONAKA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 45 (06) :2043-2044
[27]  
Ivchenko EL., 2007, Optical Spectroscopy of Semiconductor Nanostructures
[28]   BAND STRUCTURE OF INDIUM ANTIMONIDE [J].
KANE, EO .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1957, 1 (04) :249-261
[29]   MAGNETOOPTICAL STUDY ON EXCITONIC SPECTRA IN (C6H13NH3)2PBI4 [J].
KATAOKA, T ;
KONDO, T ;
ITO, R ;
SASAKI, S ;
UCHIDA, K ;
MIURA, N .
PHYSICAL REVIEW B, 1993, 47 (04) :2010-2018
[30]   The Lande factors of electrons and holes in lead halide perovskites: universal dependence on the band gap [J].
Kirstein, E. ;
Yakovlev, D. R. ;
Glazov, M. M. ;
Zhukov, E. A. ;
Kudlacik, D. ;
Kalitukha, I., V ;
Sapega, V. F. ;
Dimitriev, G. S. ;
Semina, M. A. ;
Nestoklon, M. O. ;
Ivchenko, E. L. ;
Kopteva, N. E. ;
Dirin, D. N. ;
Nazarenko, O. ;
Kovalenko, M., V ;
Baumann, A. ;
Hoecker, J. ;
Dyakonov, V ;
Bayer, M. .
NATURE COMMUNICATIONS, 2022, 13 (01)