High-performance microchip electrophoresis separations of preterm birth biomarkers using 3D printed microfluidic devices

被引:5
作者
Esene, Joule E. [1 ]
Nasman, Parker R. [1 ]
Miner, Dallin S. [2 ]
Nordin, Gregory P. [2 ]
Woolley, Adam T. [1 ]
机构
[1] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA
[2] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA
基金
美国国家卫生研究院;
关键词
Microfluidics; Microchip electrophoresis; Preterm birth biomarkers; 3D printing; Microfabrication; CAPILLARY; CHIP;
D O I
10.1016/j.chroma.2023.464242
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We employed digital light processing-stereolithography 3D printing to create microfluidic devices with different designs for microchip electrophoresis (& mu;CE). Short or long straight channel, and two- or four-turn serpentine channel microfluidic devices with separation channel lengths of 1.3, 3.1, 3.0, and 4.7 cm, respectively, all with a cross injector design, were fabricated. We measured current as a function of time and voltage to determine a separation time window and conditions for the onset of Joule heating in these designs. Separations in these devices were evaluated by performing & mu;CE and measuring theoretical plate counts for electric field strengths near and above the onset of Joule heating, with fluorescently labeled glycine and phenylalanine as model analytes. We further demonstrated & mu;CE of peptides and proteins related to preterm birth risk, showing increased peak capacity and resolution compared to previous results with 3D printed microdevices. These results mark an important step forward in the use of 3D printed microfluidic devices for rapid bioanalysis by & mu;CE.
引用
收藏
页数:8
相关论文
共 52 条
[21]   Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices [J].
Mitchell, Kaitlynn R. ;
Esene, Joule E. ;
Woolley, Adam T. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (01) :167-180
[22]   Optimization of turn geometries for microchip electrophoresis [J].
Molho, JI ;
Herr, AE ;
Mosier, BP ;
Santiago, JG ;
Kenny, TW ;
Brennen, RA ;
Gordon, GB ;
Mohammadi, B .
ANALYTICAL CHEMISTRY, 2001, 73 (06) :1350-1360
[23]   A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial [J].
Morbioli, Giorgio Gianini ;
Speller, Nicholas Colby ;
Stockton, Amanda M. .
ANALYTICA CHIMICA ACTA, 2020, 1135 :150-174
[24]   3D Printed Microfluidics [J].
Nielsen, Anna V. ;
Beauchamp, Michael J. ;
Nordin, Gregory P. ;
Woolley, Adam T. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 13, 2020, 13 :45-65
[25]   Microchip electrophoresis separation of a panel of preterm birth biomarkers [J].
Nielsen, Anna V. ;
Nielsen, Jacob B. ;
Sonker, Mukul ;
Knob, Radim ;
Sahore, Vishal ;
Woolley, Adam T. .
ELECTROPHORESIS, 2018, 39 (18) :2300-2307
[26]   Microfluidics: Innovations in Materials and Their Fabrication and Functionalization [J].
Nielsen, Jacob B. ;
Hanson, Robert L. ;
Almughamsi, Haifa M. ;
Pang, Chao ;
Fish, Taylor R. ;
Woolley, Adam T. .
ANALYTICAL CHEMISTRY, 2020, 92 (01) :150-168
[27]   Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics [J].
Noriega, Jose L. Sanchez ;
Chartrand, Nicholas A. ;
Valdoz, Jonard Corpuz ;
Cribbs, Collin G. ;
Jacobs, Dallin A. ;
Poulson, Daniel ;
Viglione, Matthew S. ;
Woolley, Adam T. ;
Van Ry, Pam M. ;
Christensen, Kenneth A. ;
Nordin, Gregory P. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[28]   Turn geometry for minimizing band broadening in microfabricated capillary electrophoresis channels [J].
Paegel, BM ;
Hutt, LD ;
Simpson, PC ;
Mathies, RA .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3030-3037
[29]   Particle focusing by 3D inertial microfluidics [J].
Paie, Petra ;
Bragheri, Francesca ;
Di Carlo, Dino ;
Osellame, Roberto .
MICROSYSTEMS & NANOENGINEERING, 2017, 3
[30]   (Bio)Analytical chemistry enabled by 3D printing: Sensors and biosensors [J].
Palenzuela, C. Lorena Manzanares ;
Pumera, Martin .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2018, 103 :110-118