Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting

被引:29
作者
Bang, Ki Ryuk [1 ]
Kwon, Choah [2 ]
Lee, Ho [2 ]
Kim, Sangtae [2 ,3 ]
Cho, Eun Seon [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[2] Hanyang Univ, Dept Nucl Engn, Seoul 04763, South Korea
[3] Hanyang Univ, Dept Mat Sci & Engn, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
osmotic power generation; ionic current rectification; graphene oxide membrane; asymmetric channel structure; multiscale modeling; PRESSURE-RETARDED OSMOSIS; SALINITY-GRADIENT POWER; ION-EXCHANGE MEMBRANES; DONNAN EQUILIBRIUM; CROSS-LINKING; PERFORMANCE; GENERATION; FUNCTIONALIZATION; ETHYLENEDIAMINE; INTERCALATION;
D O I
10.1021/acsnano.2c11975
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reverseelectrodialysis (RED) directly harvests renewable energyfrom salinity gradients, and the achievable potential power heavilyrelies on the ion exchange membranes. Graphene oxides (GOs) are considereda solid candidate for the RED membrane because the laminated GO nanochannelswith charged functional groups provide an excellent ionic selectivityand conductivity. Yet, a high internal resistance and poor stabilityin aqueous solutions limit the RED performance. Here, we develop aRED membrane that concurrently achieves high ion permeability andstable operation based on epoxy-confined GO nanochannels with asymmetricstructures. The membrane is fabricated by reacting epoxy-wrapped GOmembranes with ethylene diamine via vapor diffusion, overcoming theswelling properties in aqueous solutions. More importantly, the resultantmembrane exhibits asymmetric GO nanochannels in terms of both channelgeometry and electrostatic surface charges, leading to the rectifiedion transport behavior. The demonstrated GO membrane exhibits theRED performance up to 5.32 W center dot m(-2) with >40%energy conversion efficiency across a 50-fold salinity gradient and20.3 W center dot m(-2) across a 500-fold salinity gradient.Planck-Nernst continuum models coupled to molecular dynamicssimulations rationalize the improved RED performance in terms of theasymmetric ionic concentration gradient within the GO nanochanneland the ionic resistance. The multiscale model also provides the designguidelines for ionic diode-type membranes configuring the optimumsurface charge density and ionic diffusivity for efficient osmoticenergy harvesting. The synthesized asymmetric nanochannels and theirRED performance demonstrate the nanoscale tailoring of the membraneproperties, establishing the potentials for 2D material-based asymmetricmembranes.
引用
收藏
页码:10000 / 10009
页数:10
相关论文
共 50 条
  • [1] Nanochannels and nanoporous membranes in reverse electrodialysis for harvesting osmotic energy
    Fang, Zhenghui
    Dong, Yuhua
    Guo, Zaichao
    Zhao, Zhuo
    Zhang, Zhenhua
    Liang, Zhihao
    Yao, Huijun
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (12):
  • [2] Holey Sheets Enhance the Packing and Osmotic Energy Harvesting of Graphene Oxide Membranes
    Park, Hun
    Lee, Ki Hyun
    Noh, Sung Hyun
    Eom, Wonsik
    Huang, Jiaxing
    Han, Tae Hee
    ACS NANO, 2024, 18 (28) : 18584 - 18591
  • [3] Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels
    Laucirica, Gregorio
    Albesa, Alberto G.
    Toimil-Molares, Maria Eugenia
    Trautmann, Christina
    Marmisolle, Waldemar A.
    Azzaroni, Omar
    NANO ENERGY, 2020, 71
  • [4] Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting
    Laucirica, Gregorio
    Toimil-Molares, Maria Eugenia
    Trautmann, Christina
    Marmisolle, Waldemar
    Azzaroni, Omar
    CHEMICAL SCIENCE, 2021, 12 (39) : 12874 - 12910
  • [5] Graphene Oxide Membranes with Conical Nanochannels for Ultrafast Water Transport
    Ma, Yu
    Su, Yanlei
    He, Mingrui
    Shi, Benbing
    Zhang, Runnan
    Shen, Jianliang
    Jiang, Zhongyi
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (43) : 37489 - 37497
  • [6] Mechanically intensified and stabilized MXene membranes via the combination of graphene oxide for highly efficient osmotic power production
    Wang, Fukai
    Wang, Zhaoyi
    Wang, Saidi
    Meng, Xiuxia
    Jin, Yun
    Yang, Naitao
    Sunarso, Jaka
    Liu, Shaomin
    JOURNAL OF MEMBRANE SCIENCE, 2022, 647
  • [7] Two-Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion
    Qian, Yijun
    Liu, Dan
    Yang, Guoliang
    Chen, Jinqiu
    Ma, Yuxi
    Wang, Lifeng
    Wang, Xungai
    Lei, Weiwei
    CHEMSUSCHEM, 2022, 15 (19)
  • [8] Ion-Exchanging Graphenic Nanochannels for Macroscopic Osmotic Energy Harvesting
    Nagar, Ankit
    Islam, Md Rabiul
    Joshua, Kartheek
    Gupte, Tanvi
    Jana, Sourav Kanti
    Manna, Sujan
    Thomas, Tiju
    Pradeep, Thalappil
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (46) : 15082 - 15093
  • [9] Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting
    Xin, Weiwen
    Xiao, Hongyan
    Kong, Xiang-Yu
    Chen, Jianjun
    Yang, Linsen
    Niu, Bo
    Qian, Yongchao
    Teng, Yunfei
    Jiang, Lei
    Wen, Liping
    ACS NANO, 2020, 14 (08) : 9701 - 9710
  • [10] Flexible Organic Framework-Modified Membranes for Osmotic Energy Harvesting
    Lin, Tao
    Zhang, Lei
    Li, Chao
    Fu, Yong-Hong
    Gao, Longcheng
    Hou, Jun-Li
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (14): : 1713 - 1719