Separator modification by MoxC/N-doped graphene enabling polysulfide catalytic conversion for high-performance Li-S batteries

被引:15
作者
Yang, Xiyun [1 ]
Liu, Jiamin [1 ]
Chu, Fulu [1 ]
Lei, Jie [1 ]
Wu, Feixiang [1 ]
机构
[1] Cent South Univ, Minist Educ Adv Battery Mat, Hunan Prov Key Lab Nonferrous Value Added Met, Sch Met & Environm,Engn Res Ctr,State Key Lab Powd, Changsha 410083, Peoples R China
关键词
Lithium -sulfur (Li -S) battery; Separator modification; Polysulfides; Redox kinetics; KETJEN BLACK; SULFUR; INTERLAYER; PAPER;
D O I
10.1016/j.mtener.2023.101318
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The shuttle effect and sluggish electrochemical conversion of polysulfides have been believed to strongly influence the performances of lithium-sulfur (Li-S) batteries. Herein, we propose the synthesis of nanosized MoxC electrocatalysts embedded on N-doped graphene and develop its application for separator modification of Li-S batteries. The N-doped graphene provides a two-dimension conductive barrier layer to chemically adsorb polysulfides and inhibit polysulfides diffusion, while MoxC nano -particles could serve as the functional electrocatalyst to facilitate the redox kinetics of the multiphase conversion. The Li-S coin cells with MoxC@N-rGO-modified separator can exhibit good long-term cycling stability with a capacity decay of 0.069% per cycle after 400 cycles at 0.5C and excellent rate performance with a discharge capacity of 653 mAh/g at 4C. An area capacity of 4.5 mAh/cm(2) is also achieved with a high sulfur loading of 5.2 mg/cm(2) and a low electrolyte/sulfur ratio of similar to 5 mu L/mg. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 47 条
[1]   A multifunctional SnO2-nanowires/carbon composite interlayer for high- performance lithium-sulfur batteries [J].
Ahn, Hyunwoo ;
Kim, Yoongon ;
Bae, Jaejin ;
Kim, Ye Kyu ;
Kim, Won Bae .
CHEMICAL ENGINEERING JOURNAL, 2020, 401
[2]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[3]   Low Concentration Electrolyte Enabling Cryogenic Lithium-Sulfur Batteries [J].
Chu, Fulu ;
Wang, Meng ;
Liu, Jiamin ;
Guan, Zengqiang ;
Yu, Huanyu ;
Liu, Bin ;
Wu, Feixiang .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (44)
[4]   Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries [J].
Cui, Guoliang ;
Li, Gaoran ;
Luo, Dan ;
Zhang, Yongguang ;
Zhao, Yan ;
Wang, Daorui ;
Wang, Jiayi ;
Zhang, Zhen ;
Wang, Xin ;
Chen, Zhongwei .
NANO ENERGY, 2020, 72
[5]   A review on separators for lithium-sulfur battery: Progress and prospects [J].
Deng, Nanping ;
Kang, Weimin ;
Liu, Yanbo ;
Ju, Jingge ;
Wu, Dayong ;
Li, Lei ;
Hassan, Bukhari Samman ;
Cheng, Bowen .
JOURNAL OF POWER SOURCES, 2016, 331 :132-155
[6]   Sulfur Reduction Catalyst Design Inspired by Elemental Periodic Expansion Concept for Lithium-Sulfur Batteries [J].
Dong, Yangyang ;
Cai, Dong ;
Li, Tingting ;
Yang, Shuo ;
Zhou, Xuemei ;
Ge, Yongjie ;
Tang, Hao ;
Nie, Huagui ;
Yang, Zhi .
ACS NANO, 2022, 16 (04) :6414-6425
[7]   Advanced chemical strategies for lithium-sulfur batteries: A review [J].
Fan, Xiaojing ;
Sun, Wenwei ;
Meng, Fancheng ;
Xing, Aiming ;
Liu, Jiehua .
GREEN ENERGY & ENVIRONMENT, 2018, 3 (01) :2-19
[8]   More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Wei ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED MATERIALS, 2017, 29 (48)
[9]  
Guo Z., 2022, ACS APPL ENERG MATER, V5, P11844
[10]   Operando UV/vis Spectroscopy Providing Insights into the Sulfur and Polysulfide Dissolution in Magnesium-Sulfur Batteries [J].
Haecker, Joachim ;
Duc Hien Nguyen ;
Rommel, Tobias ;
Zhao-Karger, Zhirong ;
Wagner, Norbert ;
Friedrich, K. Andreas .
ACS ENERGY LETTERS, 2022, 7 (01) :1-9