Molecular insight into the GaP(110)-water interface using machine learning accelerated molecular dynamics

被引:21
作者
Fan, Xue-Ting [1 ,2 ]
Wen, Xiao-Jian [1 ]
Zhuang, Yong-Bin [1 ]
Cheng, Jun [1 ,3 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, iChEM, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[3] Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361005, Fujian, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 82卷
基金
中国国家自然科学基金;
关键词
Photoelectrocatalysis; GaP(110)-water interface; Machine learning accelerated molecular; dynamics; PROTON-TRANSFER MECHANISMS; WATER INTERFACE; BAND ALIGNMENT; REDUCTION; CO2; SURFACE; DRIVEN; PHOTOCATALYSTS; HYDROXIDE; ACIDITY;
D O I
10.1016/j.jechem.2023.03.013
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
GaP has been shown to be a promising photoelectrocatalyst for selective CO2 reduction to methanol. Due to the relevance of the interface structure to important processes such as electron/proton transfer, a detailed understanding of the GaP(110)-water interfacial structure is of great importance. Ab initio molecular dynamics (AIMD) can be used for obtaining the microscopic information of the interfacial structure. However, the GaP(110)-water interface cannot converge to an equilibrated structure at the time scale of the AIMD simulation. In this work, we perform the machine learning accelerated molecular dynamics (MLMD) to overcome the difficulty of insufficient sampling by AIMD. With the help of MLMD, we unravel the microscopic information of the structure of the GaP(110)-water interface, and obtain a deeper understanding of the mechanisms of proton transfer at the GaP(110)-water interface, which will pave the way for gaining valuable insights into photoelectrocatalytic mechanisms and improving the performance of photoelectrochemical cells. (c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:239 / 247
页数:9
相关论文
共 62 条
[1]   Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics [J].
Andrade, Marcos F. Calegari ;
Ko, Hsin-Yu ;
Zhang, Linfeng ;
Car, Roberto ;
Selloni, Annabella .
CHEMICAL SCIENCE, 2020, 11 (09) :2335-2341
[2]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[3]   Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell [J].
Barton, Emily E. ;
Rampulla, David M. ;
Bocarsly, Andrew B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (20) :6342-+
[4]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[5]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[6]   Aligning electronic energy levels at the TiO2/H2O interface [J].
Cheng, Jun ;
Sprik, Michiel .
PHYSICAL REVIEW B, 2010, 82 (08)
[7]   Acidity of the Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics [J].
Cheng, Jun ;
Sprik, Michiel .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (03) :880-889
[8]   Water confined in nanotubes and between graphene sheets: A first principle study [J].
Cicero, Giancarlo ;
Grossman, Jeffrey C. ;
Schwegler, Eric ;
Gygi, Francois ;
Galli, Giulia .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (06) :1871-1878
[9]   Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights [J].
Cole, Emily Barton ;
Lakkaraju, Prasad S. ;
Rampulla, David M. ;
Morris, Amanda J. ;
Abelev, Esta ;
Bocarsly, Andrew B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (33) :11539-11551
[10]   Insights into lithium manganese oxide-water interfaces using machine learning potentials [J].
Eckhoff, Marco ;
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (24)