Mobile Devices Strategies in Blockchain-Based Federated Learning: A Dynamic Game Perspective

被引:20
|
作者
Fan, Sizheng [1 ,2 ]
Zhang, Hongbo [1 ,2 ]
Wang, Zehua [3 ]
Cai, Wei [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
[2] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen 518172, Guangdong, Peoples R China
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 2G9, Canada
来源
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING | 2023年 / 10卷 / 03期
基金
中国国家自然科学基金;
关键词
Mobile handsets; Blockchains; Training; Task analysis; Smart contracts; Privacy; Games; Blockchain; dynamic game; federated learning; nash equilibrium; FRAMEWORK; PRIVATE; DESIGN;
D O I
10.1109/TNSE.2022.3163791
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Leveraging various mobile devices to train the shared model collaboratively, federated learning (FL) can improve the privacy and security of 6G communication. To economically encourage the participation of heterogeneous mobile devices, an incentive mechanism and a fair trading platform are needed. In this paper, we implement a blockchain-based FL system and propose an incentive mechanism to establish a decentralized and transparent trading platform. Moreover, to better understand the mobile devices' behaviors, we provide economic analysis for this market. Specifically, we propose two strategy models for mobile devices, namely the discrete strategy model (DSM) and the continuous strategy model (CSM). Also, we formulate the interactions among the non-cooperative mobile devices as a dynamic game, where they adjust their strategies iteratively to maximize the individual payoff based on others' previous strategies. We further prove the existence in Nash equilibrium (NE) of two different models and propose algorithms to achieve them. Simulation results demonstrate the convergence of the proposed algorithms and show that the CSM can effectively increase the mobile devices' payoffs to 128.1 percent at most compared with DSM.
引用
收藏
页码:1376 / 1388
页数:13
相关论文
共 50 条
  • [1] A Survey on Blockchain-Based Federated Learning
    Wu, Lang
    Ruan, Weijian
    Hu, Jinhui
    He, Yaobin
    Pau, Giovanni
    FUTURE INTERNET, 2023, 15 (12)
  • [2] Dynamic Incentive Design for Federated Learning Based on Consortium Blockchain Using a Stackelberg Game
    Han, Baofu
    Li, Bing
    Wolter, Katinka
    Jurdak, Raja
    Zhang, Hao
    Hu, Yuanyuan
    Li, Yi
    IEEE ACCESS, 2024, 12 : 160267 - 160283
  • [3] A Framework to Design Efficent Blockchain-Based Decentralized Federated Learning Architectures
    Formery, Yannis
    Mendiboure, Leo
    Villain, Jonathan
    Deniau, Virginie
    Gransart, Christophe
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2024, 5 : 705 - 723
  • [4] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [5] Blockchain-Based Personalized Federated Learning for Internet of Medical Things
    Lian, Zhuotao
    Wang, Weizheng
    Han, Zhaoyang
    Su, Chunhua
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023, 8 (04): : 694 - 702
  • [6] Blockchain-Based Distributed Federated Learning in Smart Grid
    Antal, Marcel
    Mihailescu, Vlad
    Cioara, Tudor
    Anghel, Ionut
    MATHEMATICS, 2022, 10 (23)
  • [7] BAFL: A Blockchain-Based Asynchronous Federated Learning Framework
    Feng, Lei
    Zhao, Yiqi
    Guo, Shaoyong
    Qiu, Xuesong
    Li, Wenjing
    Yu, Peng
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) : 1092 - 1103
  • [8] ESB-FL: Efficient and Secure Blockchain-Based Federated Learning With Fair Payment
    Chen, Biwen
    Zeng, Honghong
    Xiang, Tao
    Guo, Shangwei
    Zhang, Tianwei
    Liu, Yang
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 761 - 774
  • [9] Blockchain-Based Swarm Learning for the Mitigation of Gradient Leakage in Federated Learning
    Madni, Hussain Ahmad
    Umer, Rao Muhammad
    Foresti, Gian Luca
    IEEE ACCESS, 2023, 11 : 16549 - 16556
  • [10] BASS: A Blockchain-Based Asynchronous SignSGD Architecture for Efficient and Secure Federated Learning
    Xu, Chenhao
    Ge, Jiaqi
    Deng, Yao
    Gao, Longxiang
    Zhang, Mengshi
    Li, Yong
    Zhou, Wanlei
    Zheng, Xi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (06) : 5388 - 5402