Design of New Dispersants Using Machine Learning and Visual Analytics

被引:3
|
作者
Martinez, Maria Jimena [1 ]
Naveiro, Roi [2 ,3 ,4 ]
Soto, Axel J. [5 ,6 ]
Talavante, Pablo [3 ]
Kim Lee, Shin-Ho [3 ]
Gomez Arrayas, Ramon [3 ,7 ]
Franco, Mario [7 ]
Mauleon, Pablo [7 ]
Lozano Ordonez, Hector [8 ]
Revilla Lopez, Guillermo [8 ]
Bernabei, Marco [8 ]
Campillo, Nuria E. [2 ,3 ,9 ]
Ponzoni, Ignacio [5 ,6 ]
机构
[1] ISISTAN CONICET UNCPBA, Campus Univ Paraje Arroyo Seco, RA-7000 Tandil, Argentina
[2] UAM, Inst Math Sci ICMAT CSIC, Nicolas Cabrera,13 15,Campus Cantoblanco, Madrid 28049, Spain
[3] Ciudad Univ Cantoblanco, AItenea Biotech, Parque Cientif Madrid, Calle Faraday,7, Madrid 28049, Spain
[4] CUNEF Univ, Campus Pirineos,Calle de los Pirineos,55, Madrid 28040, Spain
[5] Inst Comp Sci & Engn UNS CONICET, San Andres 800,Campus Palihue, RA-8000 Bahia Blanca, Argentina
[6] Univ Nacl del Sur, Dept Comp Sci & Engn, San Andres 800,Campus Palihue, RA-8000 Bahia Blanca, Argentina
[7] Inst Adv Res Chem Sci IAdChem UAM, Dept Organ Chem, Madrid 28049, Spain
[8] Repsol Technol Lab DC Technol & Corp Venturing, Agustin Betancourt s n, Mostoles 28935, Madrid, Spain
[9] CIB Margarita Salas CSIC, Ramiro de Maeztu,9, Madrid 28740, Spain
关键词
polyisobutylene; blotter spot; artificial intelligence; Bayesian regression; CARBON-BLACK PARTICLES; ADDITIVES; ADSORPTION; DOMAIN; QSAR; DETERGENT/DISPERSANT; APPLICABILITY; SMILES; MEDIA;
D O I
10.3390/polym15051324
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical property in their design that can be estimated through a quantity named blotter spot. We propose a comprehensive approach that combines machine learning techniques with visual analytics strategies in an interactive tool that supports domain experts' decision-making. We evaluated the proposed models quantitatively and illustrated their benefits through a case study. Specifically, we analyzed a series of virtual polyisobutylene succinimide (PIBSI) molecules derived from a known reference substrate. Our best-performing probabilistic model was Bayesian Additive Regression Trees (BART), which achieved a mean absolute error of 5.50 & PLUSMN;0.34 and a root mean square error of 7.56 & PLUSMN;0.47, as estimated through 5-fold cross-validation. To facilitate future research, we have made the dataset, including the potential dispersants used for modeling, publicly available. Our approach can help accelerate the discovery of new oil and lubricant additives, and our interactive tool can aid domain experts in making informed decisions based on blotter spot and other key properties.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] VIS4ML: An Ontology for Visual Analytics Assisted Machine Learning
    Sacha, Dominik
    Kraus, Matthias
    Keim, Daniel A.
    Chen, Min
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (01) : 385 - 395
  • [42] Design of a Machine Learning Based Predictive Analytics System for Spam Problem
    Yuksel, A. S.
    Cankaya, S. F.
    Uncu, I. S.
    ACTA PHYSICA POLONICA A, 2017, 132 (03) : 500 - 504
  • [43] Predictive modelling and analytics for diabetes using a machine learning approach
    Kaur, Harleen
    Kumari, Vinita
    APPLIED COMPUTING AND INFORMATICS, 2022, 18 (1/2) : 90 - 100
  • [44] Predictive analytics of disc brake deformation using machine learning
    Hujare, Pravin
    Rathod, Praveen
    Kamble, Dinesh
    Jomde, Amit
    Wankhede, Shalini
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (04): : 1153 - 1163
  • [45] Predictive Analytics for Fog Computing using Machine Learning and GENI
    Patman, Jon
    Alfarhood, Meshal
    Islam, Soliman
    Lemus, Mauro
    Calyam, Prasad
    Palaniappan, Kannappan
    IEEE INFOCOM 2018 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2018, : 790 - 795
  • [46] Using Machine Learning and Artificial Intelligence to autonomous Industrial Analytics
    Seeberg, Peter
    ATP MAGAZINE, 2018, (6-7): : 18 - 21
  • [47] Faculty Effectiveness Prediction using Machine Learning and Text Analytics
    Pramod, Dhanya
    Bharathi, S. Vijayakumar
    Raman, Ramakrishnan
    2022 IEEE TECHNOLOGY AND ENGINEERING MANAGEMENT CONFERENCE (TEMSCON EUROPE), 2022, : 40 - 47
  • [48] Healthcare Monitoring using Machine Learning Based Data Analytics
    Janani, S. R.
    Subramanian, R.
    Karthik, S.
    Vimalarani, C.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (01)
  • [49] Precision agriculture using IoT data analytics and machine learning
    Akhter, Ravesa
    Sofi, Shabir Ahmad
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (08) : 5602 - 5618
  • [50] Healthcare predictive analytics using machine learning and deep learning techniques: a survey
    Mohammed Badawy
    Nagy Ramadan
    Hesham Ahmed Hefny
    Journal of Electrical Systems and Information Technology, 10 (1)