Design of New Dispersants Using Machine Learning and Visual Analytics

被引:3
|
作者
Martinez, Maria Jimena [1 ]
Naveiro, Roi [2 ,3 ,4 ]
Soto, Axel J. [5 ,6 ]
Talavante, Pablo [3 ]
Kim Lee, Shin-Ho [3 ]
Gomez Arrayas, Ramon [3 ,7 ]
Franco, Mario [7 ]
Mauleon, Pablo [7 ]
Lozano Ordonez, Hector [8 ]
Revilla Lopez, Guillermo [8 ]
Bernabei, Marco [8 ]
Campillo, Nuria E. [2 ,3 ,9 ]
Ponzoni, Ignacio [5 ,6 ]
机构
[1] ISISTAN CONICET UNCPBA, Campus Univ Paraje Arroyo Seco, RA-7000 Tandil, Argentina
[2] UAM, Inst Math Sci ICMAT CSIC, Nicolas Cabrera,13 15,Campus Cantoblanco, Madrid 28049, Spain
[3] Ciudad Univ Cantoblanco, AItenea Biotech, Parque Cientif Madrid, Calle Faraday,7, Madrid 28049, Spain
[4] CUNEF Univ, Campus Pirineos,Calle de los Pirineos,55, Madrid 28040, Spain
[5] Inst Comp Sci & Engn UNS CONICET, San Andres 800,Campus Palihue, RA-8000 Bahia Blanca, Argentina
[6] Univ Nacl del Sur, Dept Comp Sci & Engn, San Andres 800,Campus Palihue, RA-8000 Bahia Blanca, Argentina
[7] Inst Adv Res Chem Sci IAdChem UAM, Dept Organ Chem, Madrid 28049, Spain
[8] Repsol Technol Lab DC Technol & Corp Venturing, Agustin Betancourt s n, Mostoles 28935, Madrid, Spain
[9] CIB Margarita Salas CSIC, Ramiro de Maeztu,9, Madrid 28740, Spain
关键词
polyisobutylene; blotter spot; artificial intelligence; Bayesian regression; CARBON-BLACK PARTICLES; ADDITIVES; ADSORPTION; DOMAIN; QSAR; DETERGENT/DISPERSANT; APPLICABILITY; SMILES; MEDIA;
D O I
10.3390/polym15051324
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical property in their design that can be estimated through a quantity named blotter spot. We propose a comprehensive approach that combines machine learning techniques with visual analytics strategies in an interactive tool that supports domain experts' decision-making. We evaluated the proposed models quantitatively and illustrated their benefits through a case study. Specifically, we analyzed a series of virtual polyisobutylene succinimide (PIBSI) molecules derived from a known reference substrate. Our best-performing probabilistic model was Bayesian Additive Regression Trees (BART), which achieved a mean absolute error of 5.50 & PLUSMN;0.34 and a root mean square error of 7.56 & PLUSMN;0.47, as estimated through 5-fold cross-validation. To facilitate future research, we have made the dataset, including the potential dispersants used for modeling, publicly available. Our approach can help accelerate the discovery of new oil and lubricant additives, and our interactive tool can aid domain experts in making informed decisions based on blotter spot and other key properties.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Visual Analytics Using Machine Learning for Transparency Requirements
    Fadloun, Samiha
    Bennamane, Khadidja
    Meshoul, Souham
    Hosseini, Mahmood
    Choutri, Kheireddine
    MATHEMATICS, 2023, 11 (14)
  • [2] A survey of visual analytics techniques for machine learning
    Jun Yuan
    Changjian Chen
    Weikai Yang
    Mengchen Liu
    Jiazhi Xia
    Shixia Liu
    Computational Visual Media, 2021, 7 : 3 - 36
  • [3] A survey of visual analytics techniques for machine learning
    Jun Yuan
    Changjian Chen
    Weikai Yang
    Mengchen Liu
    Jiazhi Xia
    Shixia Liu
    ComputationalVisualMedia, 2021, 7 (01) : 3 - 36
  • [4] A survey of visual analytics techniques for machine learning
    Yuan, Jun
    Chen, Changjian
    Yang, Weikai
    Liu, Mengchen
    Xia, Jiazhi
    Liu, Shixia
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 3 - 36
  • [5] Predictive Modeling for Student Grade Prediction Using Machine Learning and Visual Analytics
    Bujang, Siti Dianah Abdul
    Selamat, Ali
    Krejcar, Ondrej
    KNOWLEDGE INNOVATION THROUGH INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_20), 2020, 327 : 32 - 42
  • [6] Interactive Machine Learning Tool for Clustering in Visual Analytics
    Thrun, Michael
    Pape, Felix
    Ultsch, Alfred
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 479 - 487
  • [7] The State of the Art in Integrating Machine Learning into Visual Analytics
    Endert, A.
    Ribarsky, W.
    Turkay, C.
    Wong, B. L. William
    Nabney, I.
    Diaz Blanco, I.
    Rossi, F.
    COMPUTER GRAPHICS FORUM, 2017, 36 (08) : 458 - 486
  • [8] Visual Analytics for Human-Centered Machine Learning
    Andrienko, Natalia
    Andrienko, Gennady
    Adilova, Linara
    Wrobel, Stefan
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2022, 42 (01) : 123 - 133
  • [9] Visual Analytics for Machine Learning: A Data Perspective Survey
    Wang, Junpeng
    Liu, Shixia
    Zhang, Wei
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (12) : 7637 - 7656
  • [10] Intelligent Systems for Predictive Modelling in Cheminformatics: QSPR Models for Material Design Using Machine Learning and Visual Analytics Tools
    Cravero, F.
    Martinez, M. J.
    Vazquez, G. E.
    Diaz, M. F.
    Ponzoni, I.
    10TH INTERNATIONAL CONFERENCE ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY & BIOINFORMATICS, 2016, 477 : 3 - 11