Synaptic Resistor Circuits Based on Al Oxide and Ti Silicide for Concurrent Learning and Signal Processing in Artificial Intelligence Systems

被引:24
作者
Gao, Dawei [1 ,2 ,3 ]
Shenoy, Rahul [1 ,2 ,3 ]
Yi, Suin [4 ]
Lee, Jungmin [1 ,2 ,3 ]
Xu, Mingjie [5 ]
Rong, Zixuan [1 ,2 ,3 ]
Deo, Atharva [1 ,2 ,3 ]
Nathan, Dhruva [1 ,2 ,3 ]
Zheng, Jian-Guo [5 ]
Williams, R. Stanley [4 ]
Chen, Yong [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Calif Nanosyst Inst, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif Nanosyst Inst, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[4] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[5] Univ Calif Irvine, Irvine Mat Res Inst, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
Al oxide; artificial intelligence systems; concurrent learning and signal processing; synaptic resistor circuits; Ti silicide; NEURAL-NETWORKS;
D O I
10.1002/adma.202210484
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Neurobiological circuits containing synapses can process signals while learning concurrently in real time. Before an artificial neural network (ANN) can execute a signal-processing program, it must first be programmed by humans or trained with respect to a large and defined data set during learning processes, resulting in significant latency, high power consumption, and poor adaptability to unpredictable changing environments. In this work, a crossbar circuit of synaptic resistors (synstors) is reported, each synstor integrating a Si channel with an Al oxide memory layer and Ti silicide Schottky contacts. Individual synstors are characterized and analyzed to understand their concurrent signal-processing and learning abilities. Without any prior training, synstor circuits concurrently execute signal processing and learning in real time to fly drones toward a target position in an aerodynamically changing environment faster than human controllers, and with learning speed, performance, power consumption, and adaptability to the environment significantly superior to an ANN running on computers. The synstor circuit provides a path to establish power-efficient intelligent systems with real-time learning and adaptability in the capriciously mutable real world.
引用
收藏
页数:11
相关论文
共 49 条
[1]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[2]  
[Anonymous], INTEL CORE I7 9700 C
[3]  
[Anonymous], Intel Xeon Processor E5-2600 Product Family Uncore Performance Monitoring Guide
[4]   Highly conductive nano-sized Magneli phases titanium oxide (TiOx) [J].
Arif, Aditya F. ;
Balgis, Ratna ;
Ogi, Takashi ;
Iskandar, Ferry ;
Kinoshita, Akihiro ;
Nakamura, Keitaro ;
Okuyama, Kikuo .
SCIENTIFIC REPORTS, 2017, 7
[5]   Self-driving cars: A survey [J].
Badue, Claudine ;
Guidolini, Ranik ;
Carneiro, Raphael Vivacqua ;
Azevedo, Pedro ;
Cardoso, Vinicius B. ;
Forechi, Avelino ;
Jesus, Luan ;
Berriel, Rodrigo ;
Paixao, Thiago M. ;
Mutz, Filipe ;
Veronese, Lucas de Paula ;
Oliveira-Santos, Thiago ;
De Souza, Alberto F. .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
[6]  
Bisong E., 2019, BUILDING MACHINE LEA
[7]  
Chen Y., 2020, ADV INTELL SYST, V3
[8]  
Chen Z, 2007, CORRELATIVE LEARNING: A BASIS FOR BRAIN AND ADAPTIVE SYSTEMS, P1
[9]   How to Train an All-Purpose Robot: DeepMind is Tackling one of the Hardest Problems for AI [J].
Chivers, Tom .
IEEE SPECTRUM, 2021, 58 (10) :34-41
[10]   Spike timing-dependent plasticity of neural circuits [J].
Dan, Y ;
Poo, MM .
NEURON, 2004, 44 (01) :23-30