Atomically resolved low-temperature scanning tunneling microscope operating in a 22 T water-cooled magnet

被引:9
作者
Jihao, Wang [1 ]
Li, Weixuan [1 ,5 ]
Zheng, Shaofeng [1 ,3 ]
Zhao, Kesen [1 ]
Hou, Yubin [1 ]
Zhang, Jing [1 ]
Feng, Qiyuan [1 ]
Xia, Zhigang [5 ]
Lu, Yalin [2 ,3 ]
Meng, Wenjie [1 ]
Lu, Qingyou [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme C, High Magnet Field Lab, High Magnet Field Lab Anhui Prov, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Anhui Lab Adv Photon Sci & Technol, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[4] Chinese Acad Sci, Hefei Sci Ctr, Hefei 230031, Peoples R China
[5] China Jiliang Univ, Coll Metrol & Measurement Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Scanning tunneling microscope; Nonmetallic tip-sample mechanical loop; Water-cooled magnet; Atomic resolution imaging; 22 T high magnetic field;
D O I
10.1016/j.ultramic.2022.113668
中图分类号
TH742 [显微镜];
学科分类号
摘要
We present the design and construction of a nonmetallic tip-sample mechanical loop featured Scanning Tunneling Microscope (STM) that operates in a 22 T water-cooled magnet at a low temperature of l.8 K. The STM head mainly consists of a spider-drive motor, stand-alone scanner, moveable sapphire sample holder, and sapphire frame. All parts exist in the tip-sample mechanical loop are made of sapphire to reduce the interference from high magnetic fields. Except for the necessary movement of the tip and scanner, all STM parts are stationary. More importantly, the tip-sample mechanical loop is separate from the motor after detecting the tunneling current, which helps prevent the high voltage signal interference from entering the tip-sample junction, leading to a high stable imaging. A Janis liquid helium cryostat is used to obtain a variable temperature range from 1.8 K to 300 K, and the STM head is cooled down via helium exchange gas. The STM head hangs at the bottom of a probe with a two-stage spring suspension to prevent the huge vibration generated by the watercooled magnet from entering the tip-sample junction. The performance is demonstrated by atomically resolved STM images of graphite surface at 0 T and 22.8 T under room temperature. Furthermore, the obtained atomicresolution images of NbSe2 at 1.8 K and 22 T, as well as high-resolution dI/dV spectrums at temperatures from 1.8 K to 8.5 K and magnetic fields from 0 T to 22 T are displayed. This is the first STM capable of atomicresolution imaging and dI/dV measurement at 1.8 K in a 22 T water-cooled magnet. The high immunity to the magnetic field makes the nonmetallic tip-sample mechanical loop widely useable for atomic-resolution STM imaging in ultra-high magnetic field conditions.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Charge Density Wave Vortex Lattice Observed in Graphene-Passivated 1T-TaS2 by Ambient Scanning Tunneling Microscopy [J].
Altvater, Michael A. ;
Tilak, Nikhil ;
Rao, Skandaprasad ;
Li, Guohong ;
Won, Choong-Jae ;
Cheong, Sang-Wook ;
Andrei, Eva Y. .
NANO LETTERS, 2021, 21 (14) :6132-6138
[2]   A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields [J].
Assig, Maximilian ;
Etzkorn, Markus ;
Enders, Axel ;
Stiepany, Wolfgang ;
Ast, Christian R. ;
Kern, Klaus .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (03)
[3]   SCANNING TUNNELING MICROSCOPY - FROM BIRTH TO ADOLESCENCE [J].
BINNIG, G ;
ROHRER, H .
REVIEWS OF MODERN PHYSICS, 1987, 59 (03) :615-625
[4]   Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK [J].
den Haan, A. M. J. ;
Wijts, G. H. C. J. ;
Galli, F. ;
Usenko, O. ;
van Baarle, G. J. C. ;
van der Zalm, D. J. ;
Oosterkamp, T. H. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (03)
[5]   All-electrical switching of a topological non-collinear antiferromagnet at room temperature [J].
Deng, Yongcheng ;
Liu, Xionghua ;
Chen, Yiyuan ;
Du, Zongzheng ;
Jiang, Nai ;
Shen, Chao ;
Zhang, Enze ;
Zheng, Houzhi ;
Lu, Hai-Zhou ;
Wang, Kaiyou .
NATIONAL SCIENCE REVIEW, 2023, 10 (02)
[6]   Chiral charge density waves induced by Ti-doping in 1T-TaS2 [J].
Gao, J. J. ;
Zhang, W. H. ;
Si, J. G. ;
Luo, X. ;
Yan, J. ;
Jiang, Z. Z. ;
Wang, W. ;
Lv, H. Y. ;
Tong, P. ;
Song, W. H. ;
Zhu, X. B. ;
Lu, W. J. ;
Yin, Y. ;
Sun, Y. P. .
APPLIED PHYSICS LETTERS, 2021, 118 (21)
[7]   Note: Low-temperature scanning tunneling microscope with detachable scanner and reliable transfer mechanism for tip and sample exchange [J].
Ge, Weifeng ;
Wang, Jihao ;
Wang, Junting ;
Zhang, Jing ;
Hou, Yubin ;
Lu, Qingyou .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (12)
[8]   Uniaxial negative thermal expansion and band renormalization in monolayer Td-MoTe2 at low temperature [J].
Ge, Yu ;
Ding, Zhenyu ;
Meng, Wenjie ;
Wang, Jihao ;
Hou, Yubin ;
Wu, Gang ;
Lu, Qingyou ;
Yang, Xiaoping .
PHYSICAL REVIEW B, 2020, 101 (10)
[9]   Direct measurement of the upper critical field in cuprate superconductors [J].
Grissonnanche, G. ;
Cyr-Choiniere, O. ;
Laliberte, F. ;
de Cotret, S. Rene ;
Juneau-Fecteau, A. ;
Dufour-Beausejour, S. ;
Delage, M. -E. ;
LeBoeuf, D. ;
Chang, J. ;
Ramshaw, B. J. ;
Bonn, D. A. ;
Hardy, W. N. ;
Liang, R. ;
Adachi, S. ;
Hussey, N. E. ;
Vignolle, B. ;
Proust, C. ;
Sutherland, M. ;
Kraemer, S. ;
Park, J. -H. ;
Graf, D. ;
Doiron-Leyraud, N. ;
Taillefer, Louis .
NATURE COMMUNICATIONS, 2014, 5
[10]  
GRUNBERG P, 1987, J APPL PHYS, V61, P3750, DOI 10.1063/1.338656