DECAY ESTIMATES FOR A PERTURBED TWO-TERMS SPACE-TIME FRACTIONAL DIFFUSIVE PROBLEM

被引:5
作者
D'Abbicco, Marcello [1 ]
Girardi, Giovanni [1 ]
机构
[1] Univ Bari, Bari, Italy
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2023年 / 12卷 / 04期
关键词
  Fractional diffusive models; multi-terms fractional models; Caputo time-derivative; Fujita exponents; nonlinear evolution equations; EQUATIONS; UNIQUENESS; EXISTENCE;
D O I
10.3934/eect.2022060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we consider the Cauchy-type problem associated to the space-time fractional differential equation partial differential tu+ partial differential t beta(-Delta)1-beta u - Delta u = g(t, x), t > 0, x is an element of Rn with beta is an element of (0, 1), where the fractional derivative partial differential t beta is in Caputo sense and (-Delta)1-beta is the fractional Laplace operator of order 1-beta. We provide sufficient conditions on the perturbation g which guarantees that the solution satisfies the same long-time decay estimates of the case g = 0, assuming initial datum in Hs,m for some s > 0 and m is an element of (1, infinity). We apply the obtained results to study the existence of global-in-time solutions to the associated nonlinear problems, partial differential tu+ partial differential t beta(-Delta)1-beta u - Delta u = ( |u|p, backward difference (u|u|p-1), assuming small initial datum in Hs,m and supercritical or critical powers.
引用
收藏
页码:1056 / 1082
页数:27
相关论文
共 33 条
  • [1] Decay estimates for evolution equations with classical and fractional time-derivatives
    Affili, Elisa
    Valdinoci, Enrico
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (07) : 4027 - 4060
  • [2] Porous Medium Flow with Both a Fractional Potential Pressure and Fractional Time Derivative
    Allen, Mark
    Caffarelli, Luis
    Vasseur, Alexis
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 45 - 82
  • [3] Beckers S, 2013, CONTROL OPTIMIZATION, P45, DOI [10.1007/978-3-0348-0631-2_3, DOI 10.1007/978-3-0348-0631-2_3]
  • [4] EXISTENCE, UNIQUENESS AND ASYMPTOTIC BEHAVIOUR FOR FRACTIONAL POROUS MEDIUM EQUATIONS ON BOUNDED DOMAINS
    Bonforte, Matteo
    Sire, Yannick
    Luis Vaiquez, Juan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (12) : 5725 - 5767
  • [5] Nonlinear Porous Medium Flow with Fractional Potential Pressure
    Caffarelli, Luis
    Vazquez, Juan Luis
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) : 537 - 565
  • [6] Analytical solution for the time-fractional telegraph equation by the method of separating variables
    Chen, J.
    Liu, F.
    Anh, V.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1364 - 1377
  • [7] Global small data solutions for semilinear waves with two dissipative terms
    Chen, Wenhui
    D'Abbicco, Marcello
    Girardi, Giovanni
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) : 529 - 560
  • [8] A test function method for evolution equations with fractional powers of the Laplace operator
    D'Abbicco, M.
    Fujiwara, K.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
  • [9] Asymptotic profile for a two-terms time fractional diffusion problem
    D'Abbicco, Marcello
    Girardi, Giovanni
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) : 1199 - 1228
  • [10] The Critical Exponent(s) for the Semilinear Fractional Diffusive Equation
    D'Abbicco, Marcello
    Ebert, Marcelo Rempel
    Picon, Tiago Henrique
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (03) : 696 - 731