Multipole solitons in saturable nonlinear lattices

被引:13
|
作者
Zeng, Liangwei [1 ]
Shi, Jincheng [2 ]
Belic, Milivoj R. [3 ]
Mihalache, Dumitru [4 ]
Chen, Junbo [5 ]
Long, Hu [1 ]
Lu, Xiaowei [1 ]
Cai, Yi [1 ]
Li, Jingzhen [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Minist Educ & Guangdong Prov,Key Lab Optoelect De, Shenzhen Key Lab Micronano Photon Informat Techno, Shenzhen 518060, Peoples R China
[2] CETC, Res Inst 54, Shijiazhuang 050011, Hebei, Peoples R China
[3] Texas A&M Univ Qatar, Doha 23874, Qatar
[4] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
[5] Jiaying Univ, Sch Phys & Elect Engn, Meizhou 514015, Peoples R China
基金
中国国家自然科学基金;
关键词
Multipole solitons; Saturable nonlinearity; Nonlinear lattices; Self-adaptive propagations; FRACTIONAL SCHRODINGER-EQUATION; OPTICAL SOLITONS; PROPAGATION; PHYSICS; MEDIA; HYDRODYNAMICS; DYNAMICS;
D O I
10.1007/s11071-022-07988-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We demonstrate that both fundamental and multipole soliton families can be generated and stabilized in purely saturable nonlinear lattices, which can be readily realized in nonlinear optics or Bose-Einstein condensates. The waveforms and soliton power of these soliton families, produced in the nonlinear Schrodinger equation, are highly affected by the propagation constant and the strength of nonlinearity. In particular, the amplitude of solitons increases with the increase of the propagation constant, while it decreases with the increase of the strength of nonlinearity. We investigate in detail the stability of such solitons. Beside the perturbed propagation, the stable propagation with modulated parameters that can change during propagation, is also considered, e.g., the one with the modulation of the period of the nonlinear lattice and the other one with the modulation of the strength of saturation. It is verified that the rules of variation for all soliton families are consistent with the ones for modulated parameters.
引用
收藏
页码:3665 / 3678
页数:14
相关论文
共 50 条
  • [41] Asymmetric partially coherent solitons in saturable nonlinear media
    Litchinitser, NM
    Królikowski, W
    Akhmediev, NN
    Agrawal, GP
    PHYSICAL REVIEW E, 1999, 60 (02): : 2377 - 2380
  • [42] Composite spatial solitons in a saturable nonlinear bulk medium
    C. Weilnau
    W. Królikowski
    E.A. Ostrovskaya
    M. Ahles
    M. Geisser
    G. McCarthy
    C. Denz
    Y.S. Kivshar
    B. Luther-Davies
    Applied Physics B, 2001, 72 : 723 - 727
  • [43] Radiationless traveling waves in saturable nonlinear Schrodinger lattices
    Melvin, T. R. O.
    Champneys, A. R.
    Kevrekidis, P. G.
    Cuevas, J.
    PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [44] Quantization of weakly nonlinear lattices: Envelope solitons
    Konotop, VV
    Takeno, S
    PHYSICAL REVIEW E, 2001, 63 (06):
  • [45] Asymmetric vortex solitons in nonlinear periodic lattices
    Alexander, TJ
    Sukhorukov, AA
    Kivshar, YS
    PHYSICAL REVIEW LETTERS, 2004, 93 (06) : 063901 - 1
  • [46] Stability of discrete solitons in nonlinear Schrodinger lattices
    Pelinovsky, DE
    Kevrekidis, PG
    Frantzeskakis, DJ
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 212 (1-2) : 1 - 19
  • [47] Solitons in PT-symmetric nonlinear lattices
    Abdullaev, Fatkhulla Kh.
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Zezyulin, Dmitry A.
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [48] Interface solitons in quadratic nonlinear photonic lattices
    Xu, Zhiyong
    Molina, Mario I.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [49] Quantization of weakly nonlinear lattices: Envelope solitons
    Konotop, V.V.
    Takeno, S.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (6 II): : 1 - 066606
  • [50] Surface solitons in quasiperiodic nonlinear photonic lattices
    Martinez, Alejandro J.
    Molina, Mario I.
    PHYSICAL REVIEW A, 2012, 85 (01):