On a fractional (p,q)-Laplacian equation with critical nonlinearities

被引:0
作者
Shen, Yansheng [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang, Peoples R China
关键词
Fractional; (p; q)-Laplacian; critical nonlinearities; variational techniques; Q-LAPLACIAN PROBLEM; POSITIVE SOLUTIONS; MULTIPLICITY; (P; SYSTEMS; CONCAVE; EXISTENCE;
D O I
10.1080/17476933.2024.2332312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following fractional (p, q)-Laplacian equations with critical Hardy-Sobolev exponents {(-Delta)(p)(s)(1)u + (-Delta)(q)(s)(2)u = lambda|u|(r-2) + mu |u|(p)(s1)*(alpha)-2 u/|x|(alpha) in Omega, u = 0 in R-N\Omega, 0 < s(2) < s(1) < 1 < q < r <= p <N/s(1), lambda, mu > 0 are two parameters, 0 <= alpha < ps(1) and p(s1)* (alpha) = p(N-alpha)/N-ps(1) is the fractional Hardy-Sobolev critical exponent, Omega subset of R-N is an open bounded domain with smooth boundary. By using variational methods, we show that the problem has a nontrivial nonnegative weak solution.
引用
收藏
页码:596 / 616
页数:21
相关论文
共 30 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
Ambrosio V, 2019, MINIMAX THEORY APPL, V4, P1
[3]  
Ambrosio V, 2018, MEDITERR J MATH, V15, DOI 10.1007/s00009-018-1259-9
[4]  
Bhakta M, 2019, ADV DIFFERENTIAL EQU, V24, P185
[5]   Multiplicity of positive solutions for (p, q)-Laplace equations with two parameters [J].
Bobkov, Vladimir ;
Tanaka, Mieko .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (03)
[6]   Optimal decay of extremals for the fractional Sobolev inequality [J].
Brasco, Lorenzo ;
Mosconi, Sunra ;
Squassina, Marco .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (02) :1-32
[7]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[8]   On a class of critical (p, q)-Laplacian problems [J].
Candito, Pasquale ;
Marano, Salvatore A. ;
Perera, Kanishka .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06) :1959-1972
[9]   EXISTENCE OF SOLUTIONS FOR THE FRACTIONAL (p, q)-LAPLACIAN PROBLEMS INVOLVING A CRITICAL SOBOLEV EXPONENT [J].
Chen, Fanfan ;
Yang, Yang .
ACTA MATHEMATICA SCIENTIA, 2020, 40 (06) :1666-1678
[10]   Existence of solutions for critical fractional p&q-Laplacian system [J].
Chen, Wenjing .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) :626-641