Finite-region asynchronous H∞ filtering for 2-D Markov jump systems in Roesser model

被引:29
作者
Fang, Jiankang [1 ]
Ren, Chengcheng [2 ]
Wang, Hai [3 ,4 ]
Stojanovic, Vladimir [5 ]
He, Shuping [1 ,6 ]
机构
[1] Anhui Univ, Sch Elect Engn & Automat, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Elect Informat Engn, Hefei 230601, Peoples R China
[3] Murdoch Univ, Discipline Engn & Energy, Murdoch, WA 6150, Australia
[4] Murdoch Univ, Ctr Water Energy & Waste, Murdoch, WA 6150, Australia
[5] Univ Kragujevac, Fac Mech & Civil Engn, Dept Automat Control Robot & Fluid Tech, Kraljevo 36000, Serbia
[6] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230026, Peoples R China
基金
中国博士后科学基金;
关键词
Asynchronous H-infinity filtering; Hidden Markov model; 2-D systems; Finite-region; Markov jump systems; Darboux equation; STABILITY; STABILIZATION; BOUNDEDNESS;
D O I
10.1016/j.amc.2024.128573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses finite -region asynchronous H-infinity filtering for a class of two-dimensional Markov jump systems (2-D MJSs). A mathematical model is established using the Roesser model, and asynchrony is accounted for using a hidden Markov model (HMM). The modes jumping between the target system and the designed filter are determined by the given conditional probability matrix. Sufficient conditions are derived using suitable Lyapunov function and linear matrix inequalities (LMIs) to ensure stable filtering performance. The practical applicability of the approach is illustrated by two examples. Overall, this study offers a method to tackle filtering challenges in 2-D Markov jump systems, incorporating HMM, Lyapunov functions, and LMIs to effectively solve the finite -region asynchronous H-infinity filtering problem.
引用
收藏
页数:17
相关论文
共 33 条
[1]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[2]   Stochastic stability of Positive Markov Jump Linear Systems [J].
Bolzern, Paolo ;
Colaneri, Patrizio ;
De Nicola, Giuseppe .
AUTOMATICA, 2014, 50 (04) :1181-1187
[3]   On the stability of 2D state-space models [J].
Bouagada, Djillali ;
Van Dooren, Paul .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) :198-207
[4]   Fuzzy Fault Detection for Markov Jump Systems With Partly Accessible Hidden Information: An Event-Triggered Approach [J].
Cheng, Peng ;
He, Shuping ;
Stojanovic, Vladimir ;
Luan, Xiaoli ;
Liu, Fei .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (08) :7352-7361
[5]   Hidden-Markov-Model-Based Asynchronous Filter Design of Nonlinear Markov Jump Systems in Continuous-Time Domain [J].
Dong, Shanling ;
Wu, Zheng-Guang ;
Pan, Ya-Jun ;
Su, Hongye ;
Liu, Yang .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) :2294-2304
[6]   A policy gradient algorithm integrating long and short-term rewards for soft continuum arm control [J].
Dong Xiang ;
Zhang Jing ;
Cheng Long ;
Xu WenJun ;
Su Hang ;
Mei Tao .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (10) :2409-2419
[7]   New results on stabilization of Markovian jump systems with time delay [J].
Fei, Zhongyang ;
Gao, Huijun ;
Shi, Peng .
AUTOMATICA, 2009, 45 (10) :2300-2306
[8]   Sliding Mode Control of Singular Stochastic Markov Jump Systems [J].
Feng, Zhiguang ;
Shi, Peng .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :4266-4273
[9]   STATE-SPACE REALIZATION THEORY OF 2-DIMENSIONAL FILTERS [J].
FORNASINI, E ;
MARCHESINI, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (04) :484-492
[10]   Robust Finite-Time H∞ Control of Stochastic Jump Systems [J].
He, Shu-Ping ;
Liu, Fei .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2010, 8 (06) :1336-1341