Synthesis of Quinolines from 2-amino aryl ketones: Probing the Lewis Acid Sites of Metal-Organic Framework Catalyst

被引:3
作者
Krishna, Bandarupalli [1 ,2 ]
Roy, Sounak [1 ,3 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Chem, Hyderabad Campus, Hyderabad 500078, India
[2] Adama India Pvt Ltd, Hyderabad 500078, India
[3] Birla Inst Technol & Sci Pilani, Mat Ctr Sustainable Energy & Environm, Hyderabad Campus, Hyderabad 500078, India
关键词
Friedlander synthesis; Heterogeneous catalysis; Metal-organic framework; Lewis acid sites; FRIEDLANDER SYNTHESIS; SOLVENT-FREE; EFFICIENT; ANNULATION; REDUCTION; PROTOCOL; CARBON; CO2;
D O I
10.1007/s12039-024-02257-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent research underscores the significance of metal-organic frameworks as catalysts, owing to their structural adaptability, substantial surface areas, adjustable pore dimensions, and customizable catalytic sites. Using Friedlander synthesis, we evaluated the catalytic potential of three synthesized metal-organic framework materials, MIL-53(Al), MIL-101(Cr), and MOF-5(Zn), in quinoline derivative synthesis. MIL-53(Al) outperformed MIL-101(Cr) and MOF-5(Zn), highlighting the vital role of Lewis acidic sites (Al3+) in quinoline production. Potentiometric titration analyses revealed MIL-53(Al)'s superior Lewis acid strength. Reaction optimization involved varying temperatures, catalyst loading, reaction duration, and solvents. MIL-53(Al) exhibited four-cycle recyclability. Mechanistic insights underscored Lewis acid strength and the significance of sites. The Al-based catalyst proficiently facilitated Friedlander synthesis, yielding enhanced conversion and considerable physiologically active quinoline yields. The findings offer insights into diverse catalytic strategies and demonstrate the adaptability of metal-organic framework materials in varied chemical reactions.Graphical AbstractThe Al-based Lewis acid MOF catalyst MIL-53(Al) efficiently facilitated the Friedlander synthesis, resulting in improved conversion and significant yields of physiologically active quinolines. These findings provide insights into versatile catalytic strategies and showcase the adaptability of MOFs in diverse chemical reactions.
引用
收藏
页数:9
相关论文
共 50 条
[31]   The synthesis of metal-organic framework Al-MIL-53-derived Bronsted acid catalyst and its application in the Mannich reaction [J].
Miao, Zongcheng ;
Qi, Chao ;
Wang, Liangshi ;
Wensley, Allison M. ;
Luan, Yi .
APPLIED ORGANOMETALLIC CHEMISTRY, 2017, 31 (02)
[32]   In Situ Formation of Frustrated Lewis Pairs in a Water-Tolerant Metal-Organic Framework for the Transformation of CO2 [J].
Shyshkanov, Serhii ;
Nguyen, Tu N. ;
Ebrahim, Fatmah Mish ;
Stylianou, Kyriakos C. ;
Dyson, Paul J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (16) :5371-5375
[33]   Synthesis of a chiral rod-like metal-organic framework from a preformed amino acid-based hexanuclear wheel [J].
Grancha, T. ;
Ferrando-Soria, J. ;
Armentano, D. ;
Pardo, E. .
JOURNAL OF COORDINATION CHEMISTRY, 2019, 72 (08) :1204-1221
[34]   Hexagonal Cages and Lewis Acid-Base Sites in a Metal-Organic Framework for Synergistic CO2 Capture and Conversion under Mild Conditions [J].
Wang, Weize ;
Chen, Weixuan ;
Yuan, Wenke ;
Xu, Hai-Qun ;
Liu, Bo .
INORGANIC CHEMISTRY, 2022, 61 (45) :17937-17942
[35]   Aluminum-based metal-organic framework support metal(II)-hydride as catalyst for the hydrogenation of carbon dioxide to formic acid: A computational study [J].
Nilwanna, Krongkwan ;
Sittiwong, Jarinya ;
Boekfa, Bundet ;
Treesukol, Piti ;
Boonya-udtayan, Sasiwadee ;
Probst, Michael ;
Maihom, Thana ;
Limtrakul, Jumras .
MOLECULAR CATALYSIS, 2023, 541
[36]   Switchable Metal Sites in Metal-Organic Framework MFM-300(Sc): Lewis Acid Catalysis Driven by Metal-Hemilabile Linker Bond Dynamics [J].
Peralta, Ricardo A. ;
Lyu, Pengbo ;
Lopez-Olvera, Alfredo ;
Obeso, Juan L. ;
Leyva, Carolina ;
Jeong, Nak Cheon ;
Ibarra, Ilich A. ;
Maurin, Guillaume .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (48)
[37]   Nickel based metal-organic framework as catalyst for chemical fixation of CO2 in oxazolidinone synthesis [J].
Helal, Aasif ;
Fettouhi, Mohammed ;
Arafat, Md. Eyasin ;
Khan, Mohd Yusuf ;
Sanhoob, Mohammed Ahmed .
JOURNAL OF CO2 UTILIZATION, 2021, 50
[38]   CO2 reduction to formate on an affordable bismuth metal-organic framework based catalyst [J].
Avila-Bolivar, Beatriz ;
Cepitis, Ritums ;
Alam, Mahboob ;
Assafrei, Juergen-Martin ;
Ping, Kefeng ;
Aruvali, Jaan ;
Kikas, Arvo ;
Kisand, Vambola ;
Vlassov, Sergei ;
Kaarik, Maike ;
Leis, Jaan ;
Ivaniststev, Vladislav ;
Starkov, Pavel ;
Montiel, Vicente ;
Solla-Gullon, Jose ;
Kongi, Nadezda .
JOURNAL OF CO2 UTILIZATION, 2022, 59
[39]   An in-based 3D metal-organic framework as heterogeneous Lewis acid catalyst for multi-component Strecker reactions [J].
Chai, Juan ;
Zhang, Ping ;
Xu, Jianing ;
Qi, Hui ;
Sun, Jing ;
Jing, Shubo ;
Chen, Xiaodong ;
Fan, Yong ;
Wang, Li .
INORGANICA CHIMICA ACTA, 2018, 479 :165-171
[40]   Photocatalytic CO2-to-Syngas Evolution with Molecular Catalyst Metal-organic Framework Nanozymes [J].
Stanley, Philip M. M. ;
Su, Alice Y. Y. ;
Ramm, Vanessa ;
Fink, Pascal ;
Kimna, Ceren ;
Lieleg, Oliver ;
Elsner, Martin ;
Lercher, Johannes A. A. ;
Rieger, Bernhard ;
Warnan, Julien ;
Fischer, Roland A. A. .
ADVANCED MATERIALS, 2023, 35 (06)