Synthesis of Quinolines from 2-amino aryl ketones: Probing the Lewis Acid Sites of Metal-Organic Framework Catalyst

被引:3
作者
Krishna, Bandarupalli [1 ,2 ]
Roy, Sounak [1 ,3 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Chem, Hyderabad Campus, Hyderabad 500078, India
[2] Adama India Pvt Ltd, Hyderabad 500078, India
[3] Birla Inst Technol & Sci Pilani, Mat Ctr Sustainable Energy & Environm, Hyderabad Campus, Hyderabad 500078, India
关键词
Friedlander synthesis; Heterogeneous catalysis; Metal-organic framework; Lewis acid sites; FRIEDLANDER SYNTHESIS; SOLVENT-FREE; EFFICIENT; ANNULATION; REDUCTION; PROTOCOL; CARBON; CO2;
D O I
10.1007/s12039-024-02257-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent research underscores the significance of metal-organic frameworks as catalysts, owing to their structural adaptability, substantial surface areas, adjustable pore dimensions, and customizable catalytic sites. Using Friedlander synthesis, we evaluated the catalytic potential of three synthesized metal-organic framework materials, MIL-53(Al), MIL-101(Cr), and MOF-5(Zn), in quinoline derivative synthesis. MIL-53(Al) outperformed MIL-101(Cr) and MOF-5(Zn), highlighting the vital role of Lewis acidic sites (Al3+) in quinoline production. Potentiometric titration analyses revealed MIL-53(Al)'s superior Lewis acid strength. Reaction optimization involved varying temperatures, catalyst loading, reaction duration, and solvents. MIL-53(Al) exhibited four-cycle recyclability. Mechanistic insights underscored Lewis acid strength and the significance of sites. The Al-based catalyst proficiently facilitated Friedlander synthesis, yielding enhanced conversion and considerable physiologically active quinoline yields. The findings offer insights into diverse catalytic strategies and demonstrate the adaptability of metal-organic framework materials in varied chemical reactions.Graphical AbstractThe Al-based Lewis acid MOF catalyst MIL-53(Al) efficiently facilitated the Friedlander synthesis, resulting in improved conversion and significant yields of physiologically active quinolines. These findings provide insights into versatile catalytic strategies and showcase the adaptability of MOFs in diverse chemical reactions.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Basic Catalytic Performance of Amino and Acylamide Functionalized Metal-organic Framework in the Synthesis of Chloropropene Carbonate from CO2 Under Atmospheric Pressure [J].
Song Lili ;
Chen Chao ;
Chen Xiangbin ;
Zhang Ning .
CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2016, 32 (05) :838-842
[22]   Metal-Organic Framework Derived Metal Oxide Clusters in Porous Aluminosilicates: A Catalyst Design for the Synthesis of Bioactive aza-Heterocycles [J].
Martin, Nuria ;
Dusselier, Michiel ;
De Vos, Dirk E. ;
Cirujano, Francisco G. .
ACS CATALYSIS, 2019, 9 (01) :44-48
[23]   A hydrazine functionalized UiO-66(Hf) metal-organic framework for the synthesis of quinolines via Friedlander condensation [J].
Das, Aniruddha ;
Anbu, Nagaraj ;
Varalakshmi, Perumal ;
Dhakshinamoorthy, Amarajothi ;
Biswas, Shyam .
NEW JOURNAL OF CHEMISTRY, 2020, 44 (26) :10982-10988
[24]   Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis [J].
Wang Wenyang ;
Liu Hanlin ;
Yang Caoyu ;
Fan Ting ;
Cui Chengqian ;
Lu Xiaoquan ;
Tang Zhiyong ;
Li Guodong .
CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (05) :1301-1307
[25]   Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis [J].
Wenyang Wang ;
Hanlin Liu ;
Caoyu Yang ;
Ting Fan ;
Chengqian Cui ;
Xiaoquan Lu ;
Zhiyong Tang ;
Guodong Li .
Chemical Research in Chinese Universities, 2022, 38 :1301-1307
[26]   A Hierarchical Metal-Organic Framework Composite Aerogel Catalyst Containing Integrated Acid, Base, and Metal Sites for the One-Pot Catalytic Synthesis of Cyclic Carbonates [J].
Zhao, Xinyu ;
Chang, Ganggang ;
Xu, Hongjian ;
Yao, Yao ;
Dong, Didi ;
Yang, Shujie ;
Tian, Ge ;
Yang, Xiaoyu .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (06) :7364-7373
[27]   New Opportunities in Metal-Organic Framework Catalysis: From Bifunctional to Frustrated Lewis Pairs Catalysis [J].
Dhakshinamoorthy, Amarajothi ;
Asiri, Abdullah M. ;
Garcia, Hermenegildo .
CHEMISTRY-A EUROPEAN JOURNAL, 2022, 29 (38)
[28]   Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition [J].
Noh, Jinmi ;
Kim, Youngik ;
Park, Hyojin ;
Lee, Jihyun ;
Yoon, Minyoung ;
Park, Myung Hwan ;
Kim, Youngjo ;
Kim, Min .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 64 :478-483
[29]   Evolution of a Metal-Organic Framework into a Bronsted Acid Catalyst for Glycerol Dehydration to Acrolein [J].
Li, Xiaomin ;
Huang, Liang ;
Kochubei, Alena ;
Huang, Jun ;
Shen, Wei ;
Xu, Hualong ;
Li, Qiaowei .
CHEMSUSCHEM, 2020, 13 (18) :5073-5079
[30]   Highly Active La(III)-Based Metal-Organic Framework as a Heterogeneous Lewis Acid Catalyst for Friedel-Crafts Alkylation [J].
Wu, Jia-Qi ;
Wu, Xin-Yuan ;
Lu, Jian-Mei ;
Shi, Qian ;
Shao, Li-Xiong .
CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (69)