The Circumstance-Driven Bivariate Integer-Valued Autoregressive Model

被引:1
|
作者
Wang, Huiqiao [1 ,2 ]
Weiss, Christian H. [1 ]
机构
[1] Helmut Schmidt Univ, Dept Math & Stat, Holstenhofweg 85, D-22043 Hamburg, Germany
[2] Southwestern Univ Finance & Econ, Dept Stat, Chengdu 611130, Peoples R China
关键词
CuBINAR model; non-stationarity; circumstance driven; TIME-SERIES;
D O I
10.3390/e26020168
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The novel circumstance-driven bivariate integer-valued autoregressive (CuBINAR) model for non-stationary count time series is proposed. The non-stationarity of the bivariate count process is defined by a joint categorical sequence, which expresses the current state of the process. Additional cross-dependence can be generated via cross-dependent innovations. The model can also be equipped with a marginal bivariate Poisson distribution to make it suitable for low-count time series. Important stochastic properties of the new model are derived. The Yule-Walker and conditional maximum likelihood method are adopted to estimate the unknown parameters. The consistency of these estimators is established, and their finite-sample performance is investigated by a simulation study. The scope and application of the model are illustrated by a real-world data example on sales counts, where a soap product in different stores with a common circumstance factor is investigated.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A Periodic Bivariate Integer-Valued Autoregressive Model
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    DYNAMICS, GAMES AND SCIENCE, 2015, 1 : 455 - 477
  • [2] A bivariate geometric minification integer-valued autoregressive model
    Stojanovic, Milena S.
    FILOMAT, 2024, 38 (19) : 6897 - 6910
  • [3] Estimation in a bivariate integer-valued autoregressive process
    Nastic, Aleksandar S.
    Ristic, Miroslav M.
    Popovic, Predrag M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (19) : 5660 - 5678
  • [4] A bivariate integer-valued bilinear autoregressive model with random coefficients
    Predrag M. Popović
    Hassan S. Bakouch
    Statistical Papers, 2020, 61 : 1819 - 1840
  • [5] A bivariate integer-valued bilinear autoregressive model with random coefficients
    Popovic, Predrag M.
    Bakouch, Hassan S.
    STATISTICAL PAPERS, 2020, 61 (05) : 1819 - 1840
  • [6] On bivariate threshold Poisson integer-valued autoregressive processes
    Yang, Kai
    Zhao, Yiwei
    Li, Han
    Wang, Dehui
    METRIKA, 2023, 86 (08) : 931 - 963
  • [7] On bivariate threshold Poisson integer-valued autoregressive processes
    Kai Yang
    Yiwei Zhao
    Han Li
    Dehui Wang
    Metrika, 2023, 86 : 931 - 963
  • [8] Bivariate Random Coefficient Integer-Valued Autoregressive Model Based on a ρ-Thinning Operator
    Liu, Chang
    Wang, Dehui
    AXIOMS, 2024, 13 (06)
  • [9] Modeling and inferences for bivariate signed integer-valued autoregressive models
    Lee, Sangyeol
    Jo, Minyoung
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024,
  • [10] A geometric minification integer-valued autoregressive model
    Aleksic, Milena S.
    Ristic, Miroslav M.
    APPLIED MATHEMATICAL MODELLING, 2021, 90 : 265 - 280