Landscape approximation of low-energy solutions to binary optimization problems

被引:0
作者
Tan, Benjamin Y. L. [1 ]
Gan, Beng Yee [1 ]
Leykam, Daniel [1 ]
Angelakis, Dimitris G. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[2] Tech Univ Crete, Sch Elect & Comp Engn, Khania 73100, Greece
[3] AngelQ Quantum Comp, 531A Upper Cross St,04-95 Hong Lim Complex, Singapore 051531, Singapore
基金
新加坡国家研究基金会;
关键词
QUANTUM; MECHANICS;
D O I
10.1103/PhysRevA.109.012433
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show how the localization landscape, originally introduced to bound low-energy eigenstates of disordered wave media and many-body quantum systems, can form the basis for hardware-efficient quantum algorithms for solving binary optimization problems. Many binary optimization problems can be cast as finding low-energy eigenstates of Ising Hamiltonians. First, we apply specific perturbations to the Ising Hamiltonian such that the low-energy modes are bounded by the localization landscape. Next, we demonstrate how a variational method can be used to prepare and sample from the peaks of the localization landscape. Numerical simulations of problems of up to ten binary variables show that the localization landscape-based sampling can outperform quantum approximate optimization algorithm (QAOA) circuits of similar depth, as measured in terms of the probability of sampling the exact ground state.
引用
收藏
页数:10
相关论文
共 64 条
[1]   Filtering variational quantum algorithms for combinatorial optimization [J].
Amaro, David ;
Modica, Carlo ;
Rosenkranz, Matthias ;
Fiorentini, Mattia ;
Benedetti, Marcello ;
Lubasch, Michael .
QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]   COMPUTING SPECTRA WITHOUT SOLVING EIGENVALUE PROBLEMS [J].
Arnold, Douglas N. ;
David, Guy ;
Filoche, Marcel ;
Jerison, David ;
Mayboroda, Svitlana .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01) :B69-B92
[4]   Many-body localization landscape [J].
Balasubramanian, Shankar ;
Liao, Yunxiang ;
Galitski, Victor .
PHYSICAL REVIEW B, 2020, 101 (01)
[5]  
Bapst Frederic, 2020, Computing and Software for Big Science, V4, DOI [10.1007/s41781-019-0032-5, 10.1007/s41781-019-0032-5]
[6]   ON THE COMPUTATIONAL-COMPLEXITY OF ISING SPIN-GLASS MODELS [J].
BARAHONA, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3241-3253
[7]  
Bauckhage C., 2009, Lernen. Wissen. Daten. Analysen, P54
[8]  
Bergholm V, 2022, Arxiv, DOI [arXiv:1811.04968, 10.48550/arXiv.1811.04968]
[9]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[10]   Iterative quantum-assisted eigensolver [J].
Bharti, Kishor ;
Haug, Tobias .
PHYSICAL REVIEW A, 2021, 104 (05)