Development and Validation of the American Heart Association's PREVENT Equations

被引:150
作者
Khan, Sadiya S. [1 ]
Matsushita, Kunihiro [2 ]
Sang, Yingying [2 ,4 ]
Ballew, Shoshana H. [2 ,4 ]
Grams, Morgan E. [3 ]
Surapaneni, Aditya [3 ]
Blaha, Michael J. [5 ]
Carson, April P. [6 ]
Chang, Alexander R. [7 ,8 ]
Ciemins, Elizabeth [9 ]
Go, Alan S. [10 ,11 ,12 ,13 ,14 ,15 ]
Gutierrez, Orlando M. [16 ,17 ]
Hwang, Shih-Jen [18 ]
Jassal, Simerjot K. [19 ,20 ]
Kovesdy, Csaba P. [21 ,22 ]
Lloyd-Jones, Donald M. [23 ]
Shlipak, Michael G. [24 ,25 ]
Palaniappan, Latha P. [26 ,27 ]
Sperling, Laurence [28 ]
Virani, Salim S. [29 ,30 ,31 ]
Tuttle, Katherine [32 ,33 ,34 ]
Neeland, Ian J. [35 ]
Chow, Sheryl L. [36 ]
Rangaswami, Janani [37 ,38 ]
Pencina, Michael J. [39 ]
Ndumele, Chiadi E. [40 ]
Coresh, Josef [2 ,4 ]
机构
[1] Northwestern Univ, Dept Med, Feinberg Sch Med, Chicago, IL USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[3] NYU, Dept Med, Div Precis Med, Grossman Sch Med, New York, NY USA
[4] NYU, Dept Populat Hlth, Grossman Sch Med, New York, NY USA
[5] Johns Hopkins Ciccarone Ctr Prevent Cardiovasc Di, Baltimore, MD USA
[6] Univ Mississippi, Med Ctr, Jackson, MS USA
[7] Geisinger Hlth, Dept Nephrol, Danville, PA USA
[8] Geisinger Hlth, Dept Populat Hlth Sci, Danville, PA USA
[9] Amer Med Grp Assoc, Alexandria, VA USA
[10] Kaiser Permanente Northern Calif, Div Res, Oakland, ON, Canada
[11] Kaiser Permanente Bernard J Tyson Sch Med, Dept Hlth Syst Sci, Pasadena, CA USA
[12] Univ Calif San Francisco, Dept Epidemiol, San Francisco, CA USA
[13] Univ Calif San Francisco, Dept Biostat, San Francisco, CA USA
[14] Univ Calif San Francisco, Dept Med, San Francisco, CA USA
[15] Stanford Univ, Dept Med Nephrol, Sch Med, Palo Alto, CA USA
[16] Univ Alabama Birmingham, Dept Epidemiol, Birmingham, AL USA
[17] Univ Alabama Birmingham, Dept Med, Birmingham, AL USA
[18] NHLBI, Framingham, MA USA
[19] Univ Calif San Diego, Div Gen Internal Med, San Diego, CA USA
[20] VA San Diego Healthcare, San Diego, CA USA
[21] Memphis Vet Affairs Med Ctr, Med Nephrol, Memphis, TN USA
[22] Univ Tennessee, Hlth Sci Ctr, Memphis, TN USA
[23] Northwestern Univ, Dept Prevent Med, Chicago, IL USA
[24] Univ Calif San Francisco, Dept Med Epidemiol & Biostat, San Francisco, CA USA
[25] San Francisco VA Med Ctr, San Francisco, CA USA
[26] Stanford Univ, Ctr Asian Hlth Res & Educ, Sch Med, Stanford, CA USA
[27] Stanford Univ, Dept Med, Sch Med, Stanford, CA USA
[28] Emory Univ, Dept Cardiol, Atlanta, GA USA
[29] Aga Khan Univ, Dept Med, Karachi, Pakistan
[30] Texas Heart Inst, Houston, TX USA
[31] Baylor Coll Med, Houston, TX USA
[32] Providence Inland Northwest Hlth, Providence Med Res Ctr, Spokane, WA USA
[33] Univ Washington, Kidney Res Inst, Seattle, WA USA
[34] Univ Washington, Inst Translat Hlth Sci, Seattle, WA USA
[35] Case Western Reserve Univ, Ctr Integrated & Novel Approaches Vasc Metab CINE, Harrington Heart & Vasc Inst,Univ Hosp Cleveland, UH Ctr Cardiovasc Prevent,Sch Med,Translat Sci Un, Cleveland, OH USA
[36] Western Univ Hlth Sci, Coll Pharm, Dept Pharm Practice & Adm, Pomona, CA USA
[37] Washington DC VA Med Ctr, Washington, DC USA
[38] George Washington Univ, Sch Med, Washington, DC USA
[39] Duke Univ, Dept Biostat, Med Ctr, Durham, NC USA
[40] Johns Hopkins Univ, Div Cardiol, Sch Med, Baltimore, MD USA
关键词
cardiovascular diseases; heart failure; kidney diseases; models; cardiovascular; risk assessment; social determinants of health; GLOMERULAR-FILTRATION-RATE; CARDIOVASCULAR-DISEASE RISK; GENERAL-POPULATION; RACIAL-DIFFERENCES; UNITED-STATES; 10-YEAR RISK; TIME-SCALE; FOLLOW-UP; ALL-CAUSE; MORTALITY;
D O I
10.1161/CIRCULATIONAHA.123.067626
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Multivariable equations are recommended by primary prevention guidelines to assess absolute risk of cardiovascular disease (CVD). However, current equations have several limitations. Therefore, we developed and validated the American Heart Association Predicting Risk of CVD EVENTs (PREVENT) equations among US adults 30 to 79 years of age without known CVD. METHODS: The derivation sample included individual-level participant data from 25 data sets (N=3 281 919) between 1992 and 2017. The primary outcome was CVD (atherosclerotic CVD and heart failure). Predictors included traditional risk factors (smoking status, systolic blood pressure, cholesterol, antihypertensive or statin use, and diabetes) and estimated glomerular filtration rate. Models were sex-specific, race-free, developed on the age scale, and adjusted for competing risk of non-CVD death. Analyses were conducted in each data set and meta-analyzed. Discrimination was assessed using the Harrell C-statistic. Calibration was calculated as the slope of the observed versus predicted risk by decile. Additional equations to predict each CVD subtype (atherosclerotic CVD and heart failure) and include optional predictors (urine albumin-to-creatinine ratio and hemoglobin A1c), and social deprivation index were also developed. External validation was performed in 3 330 085 participants from 21 additional data sets. RESULTS: Among 6 612 004 adults included, mean +/- SD age was 53 +/- 12 years, and 56% were women. Over a mean +/- SD follow-up of 4.8 +/- 3.1 years, there were 211 515 incident total CVD events. The median C-statistics in external validation for CVD were 0.794 (interquartile interval, 0.763-0.809) in female and 0.757 (0.727-0.778) in male participants. The calibration slopes were 1.03 (interquartile interval, 0.81-1.16) and 0.94 (0.81-1.13) among female and male participants, respectively. Similar estimates for discrimination and calibration were observed for atherosclerotic CVD- and heart failure-specific models. The improvement in discrimination was small but statistically significant when urine albumin-to-creatinine ratio, hemoglobin A1c, and social deprivation index were added together to the base model to total CVD (Delta C-statistic [interquartile interval] 0.004 [0.004-0.005] and 0.005 [0.004-0.007] among female and male participants, respectively). Calibration improved significantly when the urine albumin-to-creatinine ratio was added to the base model among those with marked albuminuria (>300 mg/g; 1.05 [0.84-1.20] versus 1.39 [1.14-1.65]; P=0.01). CONCLUSIONS:PREVENT equations accurately and precisely predicted risk for incident CVD and CVD subtypes in a large, diverse, and contemporary sample of US adults by using routinely available clinical variables.
引用
收藏
页码:430 / 449
页数:20
相关论文
共 90 条
[1]   National Trends in Heart Failure Hospitalizations and Readmissions From 2010 to 2017 [J].
Agarwal, Manyoo A. ;
Fonarow, Gregg C. ;
Ziaeian, Boback .
JAMA CARDIOLOGY, 2021, 6 (08) :952-956
[2]  
Arnett DK, 2019, CIRCULATION, V140, pE563, DOI [10.1161/CIR.0000000000000678, 10.1161/CIR.0000000000000677, 10.1016/j.jacc.2019.03.009, 10.1016/j.jacc.2019.03.010]
[3]   Lifetime Risks of Cardiovascular Disease [J].
Berry, Jarett D. ;
Dyer, Alan ;
Cai, Xuan ;
Garside, Daniel B. ;
Ning, Hongyan ;
Thomas, Avis ;
Greenland, Philip ;
Van Horn, Linda ;
Tracy, Russell P. ;
Lloyd-Jones, Donald M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (04) :321-329
[4]   Multi-ethnic study of atherosclerosis: Objectives and design [J].
Bild, DE ;
Bluemke, DA ;
Burke, GL ;
Detrano, R ;
Roux, AVD ;
Folsom, AR ;
Greenland, P ;
Jacobs, DR ;
Kronmal, R ;
Liu, K ;
Nelson, JC ;
O'Leary, D ;
Saad, MF ;
Shea, S ;
Szklo, M ;
Tracy, RP .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2002, 156 (09) :871-881
[5]  
Bucholz EM, 2018, CIRCULATION, V137, P2218, DOI [10.1161/CIRCULATIONAHA.117.032321, 10.1161/circulationaha.117.032321]
[6]   Black-White Differences in Incident Fatal, Nonfatal, and Total Coronary Heart Disease [J].
Colantonio, Lisandro D. ;
Gamboa, Christopher M. ;
Richman, Joshua S. ;
Levitan, Emily B. ;
Soliman, Elsayed Z. ;
Howard, George ;
Safford, Monika M. .
CIRCULATION, 2017, 136 (02) :152-+
[7]   Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) The TRIPOD Statement [J].
Collins, Gary S. ;
Reitsma, Johannes B. ;
Altman, Douglas G. ;
Moons, Karel G. M. .
CIRCULATION, 2015, 131 (02) :211-219
[8]   Proportional Hazards Regression in Epidemiologic Follow-up Studies An Intuitive Consideration of Primary Time Scale [J].
Cologne, John ;
Hsu, Wan-Ling ;
Abbott, Robert D. ;
Ohishi, Waka ;
Grant, Eric J. ;
Fujiwara, Saeko ;
Cullings, Harry M. .
EPIDEMIOLOGY, 2012, 23 (04) :565-573
[9]   Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project [J].
Conroy, RM ;
Pyörälä, K ;
Fitzgerald, AP ;
Sans, S ;
Menotti, A ;
De Backer, G ;
De Bacquer, D ;
Ducimetière, P ;
Jousilahti, P ;
Keil, U ;
Njolstad, I ;
Oganov, RG ;
Thomsen, T ;
Tunstall-Pedoe, H ;
Tverdal, A ;
Wedel, H ;
Whincup, P ;
Wilhelmsen, L ;
Graham, IM .
EUROPEAN HEART JOURNAL, 2003, 24 (11) :987-1003
[10]   DIFFERENCES BETWEEN RESPONDENTS AND NONRESPONDENTS IN A POPULATION-BASED CARDIOVASCULAR-DISEASE STUDY [J].
CRIQUI, MH ;
BARRETTCONNOR, E ;
AUSTIN, M .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1978, 108 (05) :367-372