Large Language Models and Healthcare Alliance: Potential and Challenges of Two Representative Use Cases

被引:2
|
作者
Garcia-Mendez, Silvia [1 ]
de Arriba-Perez, Francisco [1 ]
机构
[1] Univ Vigo, atlanTTic, Informat Technol Grp, Vigo, Spain
关键词
Artificial intelligence; Cognitive decline; Intelligent conversational assistants; Large language models; Natural language processing; Postpartum depression;
D O I
10.1007/s10439-024-03454-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Large language models (LLMS) emerge as the most promising Natural Language Processing approach for clinical practice acceleration (i.e., diagnosis, prevention and treatment procedures). Similarly, intelligent conversational systems that leverage LLMS have disruptively become the future of therapy in the era of Chatgpt. Accordingly, this research addresses the application of LLMS in healthcare, paying particular attention to two relevant use cases: cognitive decline and depression, more specifically, postpartum depression. In the end, the most promising opportunities they represent (e.g., clinical tasks augmentation, personalized healthcare, etc.) and related concerns (e.g., data privacy and quality, fairness, etc.) are discussed to contribute to the global debate on their integration in the sanitary system.
引用
收藏
页码:1928 / 1931
页数:4
相关论文
共 50 条
  • [1] Trends, Challenges, and Applications of Large Language Models in Healthcare: A Bibliometric and Scoping Review
    Carchiolo, Vincenza
    Malgeri, Michele
    FUTURE INTERNET, 2025, 17 (02)
  • [2] A Critical Review of Methods and Challenges in Large Language Models
    Moradi, Milad
    Yan, Ke
    Colwell, David
    Samwald, Matthias
    Asgari, Rhona
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (02): : 1681 - 1698
  • [3] Large language models in medical and healthcare fields: applications, advances, and challenges
    Wang, Dandan
    Zhang, Shiqing
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (11)
  • [4] Transformers and large language models in healthcare: A review
    Nerella, Subhash
    Bandyopadhyay, Sabyasachi
    Zhang, Jiaqing
    Contreras, Miguel
    Siegel, Scott
    Bumin, Aysegul
    Silva, Brandon
    Sena, Jessica
    Shickel, Benjamin
    Bihorac, Azra
    Khezeli, Kia
    Rashidi, Parisa
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [5] Benchmarking Large Language Models: Opportunities and Challenges
    Hodak, Miro
    Ellison, David
    Van Buren, Chris
    Jiang, Xiaotong
    Dholakia, Ajay
    PERFORMANCE EVALUATION AND BENCHMARKING, TPCTC 2023, 2024, 14247 : 77 - 89
  • [6] Ethical and Theological Challenges of Large Language Models
    Strahornik, Vojko
    BOGOSLOVNI VESTNIK-THEOLOGICAL QUARTERLY-EPHEMERIDES THEOLOGICAE, 2023, 83 (04): : 839 - 852
  • [7] Foundation and large language models: fundamentals, challenges, opportunities, and social impacts
    Myers, Devon
    Mohawesh, Rami
    Chellaboina, Venkata Ishwarya
    Sathvik, Anantha Lakshmi
    Venkatesh, Praveen
    Ho, Yi-Hui
    Henshaw, Hanna
    Alhawawreh, Muna
    Berdik, David
    Jararweh, Yaser
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (01): : 1 - 26
  • [8] Foundation and large language models: fundamentals, challenges, opportunities, and social impacts
    Devon Myers
    Rami Mohawesh
    Venkata Ishwarya Chellaboina
    Anantha Lakshmi Sathvik
    Praveen Venkatesh
    Yi-Hui Ho
    Hanna Henshaw
    Muna Alhawawreh
    David Berdik
    Yaser Jararweh
    Cluster Computing, 2024, 27 : 1 - 26
  • [9] The Arrival of Artificial Intelligence Large Language Models and Vision-Language Models: A Potential to Possible Change in the Paradigm of Healthcare Delivery in Dermatology
    Gupta, Aditya K.
    Talukder, Mesbah
    Wang, Tong
    Daneshjou, Roxana
    Piguet, Vincent
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2024, 144 (06) : 1186 - 1188
  • [10] Potential of Large Language Models in Health Care: Delphi Study
    Denecke, Kerstin
    May, Richard
    Romero, Octavio Rivera
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26