Perfect mixed codes from generalized Reed-Muller codes

被引:1
作者
Romanov, Alexander M. [1 ]
机构
[1] Sobolev Inst Math, 4 Acad,Koptyug Ave, Novosibirsk 630090, Russia
关键词
Mixed codes; Perfect codes; Quasi-perfect codes; Generalized Reed-Muller codes; MDS codes; Latin hypercubes; ERROR-CORRECTING CODES; UNRESTRICTED CODES; RANK; CONSTRUCTION; NONEXISTENCE;
D O I
10.1007/s10623-024-01364-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we propose a new method for constructing 1-perfect mixed codes in the Cartesian product F(n)xF(q)(n), where F-n and F-q are finite fields of orders n = q(m) and q. We consider generalized Reed-Muller codes of length n=qm and order(q-1)m-2. Codes whose parameters are the same as the parameters of generalized Reed-Muller codes are called Reed-Muller-like codes. The construction we propose is based on partitions of distance-2MDS codes into Reed-Muller-like codes of order(q-1)m-2. We construct a set of q(qcn) nonequivalent 1-perfect mixed codes in the Cartesian product FxF(q)(n), where the constant c satisfies c<1,n=q(m) and m is a sufficiently large positive integer. We also prove that each1-perfect mixed code in the Cartesian product F(n)xF(q)(n) corresponds to a certain partition ofa distance-2 MDS code into Reed-Muller-like codes of order(q-1)m-2.
引用
收藏
页码:1747 / 1759
页数:13
相关论文
共 38 条