Confinement Performance of the Plasma Equilibrium Configuration of Compact Galatea Magnetic Trap

被引:0
作者
Tao, B. Q. [1 ,2 ]
Liu, J. [1 ,2 ]
Liang, P. [1 ]
Ma, Ch. [1 ,2 ]
机构
[1] Hubei Univ Arts & Sci, Key Lab Power Syst Design & Test Elect Vehicle, Xiangyang 441000, Hubei, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Automot & Traff Engn, Xiangyang 441000, Hubei, Peoples R China
关键词
Trimyx Galatea; 2D MHD models; equilibrium configuration; magnetic specific volume;
D O I
10.1134/S1063780X23601116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The basic goal of magnetic confinement is to maintain plasma in an equilibrium state for an extended period using a magnetic field configuration. The plasma equilibrium configuration significantly affects the confinement efficiency and stability of the magnetic confinement device, and we anticipate that the equilibrium discharge of the Trimyx Galatea magnetic trap device will operate in an optimal configuration. The Grad-Shafranov equation, a mathematical model of two-dimensional magneto-fluid static equilibrium of the Trimyx Galatea magnetic trap, was established. Numerical calculations were performed under the conditions of a given magnetic field configuration and plasma pressure distribution and the evolution laws of the distinctive parameters of the equilibrium configuration were determined under different plasma confinement settings. The magnetic specific volume coupling model was further developed to demonstrate the mechanism of the influence of the magnetic trap magnetic field on the plasma confinement efficiency and properties.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 20 条
  • [1] Analysis of the Diamagnetic Effect in Multipole Galatea Traps
    Bishaev, A. M.
    Bugrova, A. I.
    Gavrikov, M. B.
    Kozintseva, M. V.
    Lipatov, A. S.
    Savel'ev, V. V.
    Sigov, A. S.
    Smirnov, P. G.
    Tarelkin, I. A.
    Khramtsov, P. P.
    [J]. TECHNICAL PHYSICS, 2013, 58 (04) : 498 - 504
  • [2] Brushlinskii K. V., 2021, Journal of Physics: Conference Series, V2028, DOI 10.1088/1742-6596/2028/1/012026
  • [3] Brushlinskii K. V., 2020, Journal of Physics: Conference Series, V1686, DOI 10.1088/1742-6596/1686/1/012030
  • [4] Plasmastatic models of galathea traps with magnetically transparent boundaries
    Brushlinskii, K. V.
    Goldich, A. S.
    [J]. PLASMA PHYSICS REPORTS, 2014, 40 (08) : 591 - 600
  • [5] Plasmostatic models of magnetic galateya-traps
    Brushlinskii K.V.
    Gol’dich A.S.
    Desyatova A.S.
    [J]. Mathematical Models and Computer Simulations, 2013, 5 (2) : 156 - 166
  • [6] A Plasmastatic Model of the Galathea-Belt Magnetic Trap
    Brushlinskii, K. V.
    Ignatov, P. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (12) : 2071 - 2081
  • [7] Brushlinskii K. V., 2011, MATH MODELS COMP SIM, V3, P9, DOI [DOI 10.1134/S2070048211010017, 10.1134/S2070048211010017]
  • [8] Theory of ion dynamics and heating by magnetic pumping in FRC plasma
    Egedal, J.
    Monkhorst, H. J.
    Lichko, E.
    Montag, P.
    [J]. PHYSICS OF PLASMAS, 2018, 25 (07)
  • [9] The Experimental Advanced Superconducting Tokamak
    Li, Jiangang
    Wan, Yuanxi
    [J]. ENGINEERING, 2021, 7 (11) : 1523 - 1528
  • [10] Miyamoto K., 1979, PLASMA PHYS CONTROLL