Histopathology images-based deep learning prediction of prognosis and therapeutic response in small cell lung cancer

被引:23
作者
Zhang, Yibo [1 ,2 ]
Yang, Zijian [2 ]
Chen, Ruanqi [1 ]
Zhu, Yanli [3 ]
Liu, Li [1 ]
Dong, Jiyan [1 ]
Zhang, Zicheng [2 ]
Sun, Xujie [1 ]
Ying, Jianming [1 ]
Lin, Dongmei [3 ]
Yang, Lin [1 ]
Zhou, Meng [2 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc,Dept Pathol, Beijing 100021, Peoples R China
[2] Wenzhou Med Univ, Sch Biomed Engn, Wenzhou 325027, Peoples R China
[3] Peking Univ Canc Hosp & Inst, Minist Educ, Dept Pathol, Key Lab Carcinogenesis & Translat Res, Beijing 100142, Peoples R China
关键词
Biological organs - Deep learning - Diagnosis - Diseases - Image enhancement - Patient treatment - Regression analysis;
D O I
10.1038/s41746-024-01003-0
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer characterized by rapid tumor growth and early metastasis. Accurate prediction of prognosis and therapeutic response is crucial for optimizing treatment strategies and improving patient outcomes. In this study, we conducted a deep-learning analysis of Hematoxylin and Eosin (H&E) stained histopathological images using contrastive clustering and identified 50 intricate histomorphological phenotype clusters (HPCs) as pathomic features. We identified two of 50 HPCs with significant prognostic value and then integrated them into a pathomics signature (PathoSig) using the Cox regression model. PathoSig showed significant risk stratification for overall survival and disease-free survival and successfully identified patients who may benefit from postoperative or preoperative chemoradiotherapy. The predictive power of PathoSig was validated in independent multicenter cohorts. Furthermore, PathoSig can provide comprehensive prognostic information beyond the current TNM staging system and molecular subtyping. Overall, our study highlights the significant potential of utilizing histopathology images-based deep learning in improving prognostic predictions and evaluating therapeutic response in SCLC. PathoSig represents an effective tool that aids clinicians in making informed decisions and selecting personalized treatment strategies for SCLC patients.
引用
收藏
页数:12
相关论文
共 24 条
  • [1] Integrated tumor identification and automated scoring minimizes pathologist involvement and provides new insights to key biomarkers in breast cancer
    Bankhead, Peter
    Fernandez, Jose A.
    McArt, Darragh G.
    Boyle, David P.
    Li, Gerald
    Loughrey, Maurice B.
    Irwin, Gareth W.
    Harkin, D. Paul
    James, Jacqueline A.
    McQuaid, Stephen
    Salto-Tellez, Manuel
    Hamilton, Peter W.
    [J]. LABORATORY INVESTIGATION, 2018, 98 (01) : 15 - 26
  • [2] Small Cell Lung Cancer: Where Do We Go From Here?
    Byers, Lauren Averett
    Rudin, Charles M.
    [J]. CANCER, 2015, 121 (05) : 664 - 672
  • [3] Clinical characteristics and patient outcomes of molecular subtypes of small cell lung cancer (SCLC)
    Ding, Xiao-Long
    Su, Yi-Ge
    Yu, Liang
    Bai, Zhou-Lan
    Bai, Xue-Hong
    Chen, Xiao-Zhen
    Yang, Xia
    Zhao, Ren
    He, Jin-Xi
    Wang, Yan-Yang
    [J]. WORLD JOURNAL OF SURGICAL ONCOLOGY, 2022, 20 (01)
  • [4] Cells of origin of lung cancers: lessons from mouse studies
    Ferone, Giustina
    Lee, Myung Chang
    Sage, Julien
    Berns, Anton
    [J]. GENES & DEVELOPMENT, 2020, 34 (15-16) : 1017 - 1032
  • [5] Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities
    Gay, Carl M.
    Stewart, C. Allison
    Park, Elizabeth M.
    Diao, Lixia
    Groves, Sarah M.
    Heeke, Simon
    Nabet, Barzin Y.
    Fujimoto, Junya
    Solis, Luisa M.
    Lu, Wei
    Xi, Yuanxin
    Cardnell, Robert J.
    Wang, Qi
    Fabbri, Giulia
    Cargill, Kasey R.
    Vokes, Natalie, I
    Ramkumar, Kavya
    Zhang, Bingnan
    Della Corte, Carminia M.
    Robson, Paul
    Swisher, Stephen G.
    Roth, Jack A.
    Glisson, Bonnie S.
    Shames, David S.
    Wistuba, Ignacio I.
    Wang, Jing
    Quaranta, Vito
    Minna, John
    Heymach, John, V
    Byers, Lauren Averett
    [J]. CANCER CELL, 2021, 39 (03) : 346 - +
  • [6] Gazdar AF, 2017, NAT REV CANCER, V17, P725, DOI [10.1038/nrc.2017.87, 10.1038/nrc.2017.106]
  • [7] The Comparative Pathology of Genetically Engineered Mouse Models for Neuroendocrine Carcinomas of the Lung
    Gazdar, Adi F.
    Savage, Trisha K.
    Johnson, Jane E.
    Berns, Anton
    Sage, Julien
    Linnoila, R. Ilona
    MacPherson, David
    McFadden, David G.
    Farago, Anna
    Jacks, Tyler
    Travis, William D.
    Brambilla, Elisabeth
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2015, 10 (04) : 553 - 564
  • [8] Whole-Section Landscape Analysis of Molecular Subtypes in Curatively Resected Small Cell Lung Cancer: Clinicopathologic Features and Prognostic Significance
    Hwang, Soohyun
    Hong, Tae Hee
    Kim, Hong Kwan
    Choi, Yong Soo
    Zo, Jae Ill
    Shim, Young Mog
    Han, Joungho
    Ahn, Yong Chan
    Pyo, Hongryull
    Noh, Jae Myoung
    Lee, Ho Yun
    Kim, Ho Joong
    Park, Sehhoon
    Ahn, Myung-Ju
    Park, Keunchil
    Lee, Se-Hoon
    Choi, Yoon-La
    Kim, Jhingook
    [J]. MODERN PATHOLOGY, 2023, 36 (07)
  • [9] Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives
    Imyanitov, Evgeny N.
    Iyevleva, Aglaya G.
    Levchenko, Evgeny V.
    [J]. CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2021, 157
  • [10] Deep Learning Based on Standard H&E Images of Primary Melanoma Tumors Identifies Patients at Risk for Visceral Recurrence and Death
    Kulkarni, Prathamesh M.
    Robinson, Eric J.
    Pradhan, Jaya Sarin
    Gartrell-Corrado, Robyn D.
    Rohr, Bethany R.
    Trager, Megan H.
    Geskin, Larisa J.
    Kluger, Harriet M.
    Wang, Pok Fai
    Acs, Balazs
    Rizk, Emanuelle M.
    Yang, Chen
    Mondal, Manas
    Moore, Michael R.
    Osman, Iman
    Phelps, Robert
    Horst, Basil A.
    Chen, Zhe S.
    Ferringer, Tammie
    Rimm, David L.
    Wang, Jing
    Saenger, Yvonne M.
    [J]. CLINICAL CANCER RESEARCH, 2020, 26 (05) : 1126 - 1134