King Type (p, q)-Bernstein Schurer Operators

被引:0
|
作者
Bawa, Parveen [1 ]
Bhardwaj, Neha [2 ]
Bhatia, Sumit Kaur [1 ]
机构
[1] Amity Univ, Amity Inst Appl Sci, Dept Math, Noida 201303, Uttar Pradesh, India
[2] Sharda Univ, Sch Basic Sci & Res, Dept Math, Greater Noida 201310, India
来源
THAI JOURNAL OF MATHEMATICS | 2023年 / 21卷 / 03期
关键词
q-Bernstein-Schurer operators; (p; q)-integers; q)-Bernstein-Schurer operators; rate of convergence; modulus of continuity; LINEAR-OPERATORS; ERROR ESTIMATION; APPROXIMATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objective of this paper is to establish the King variant of modified form of (p, q) variant of Bernstein Schurer operators and examine the estimation properties. Using King modification, we present approximation properties and estimate error of constructed operators using modulus of continuity. We also study convergence rate as well as its Voronovskaya results. Lastly, we show illustrative graphics of some numerical examples and compared the theoritical results of constructed operators graphically to various functions using MATLAB code.
引用
收藏
页码:431 / 443
页数:13
相关论文
共 50 条
  • [1] King type modification of q-Bernstein-Schurer operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 805 - 817
  • [2] King type modification of q-Bernstein-Schurer operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Czechoslovak Mathematical Journal, 2013, 63 : 805 - 817
  • [3] q-Bernstein-Schurer-Kantorovich type operators
    Agrawal, P. N.
    Goyal, Meenu
    Kajla, Arun
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 169 - 180
  • [4] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180
  • [5] On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 12 - 20
  • [6] Security of image transfer and innovative results for (p,q)-Bernstein-Schurer p,q )-Bernstein-Schurer operators
    Bilgin, Nazmiye Gonul
    Kaya, Yusuf
    Eren, Melis
    AIMS MATHEMATICS, 2024, 9 (09): : 23812 - 23836
  • [7] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [8] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Journal of Inequalities and Applications, 2015
  • [9] Bivariate Bernstein-Schurer-Stancu type GBS operators in (p,q)-analogue
    Mursaleen, M.
    Ahasan, Mohd.
    Ansari, K. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [10] q-Bernstein-Schurer-Kantorovich Operators
    Ozarslan, Mehmet Ali
    Vedi, Tuba
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,