Multi-scale spatial-spectral Transformer for spectral reconstruction from RGB images

被引:3
作者
Luan, HongKang [1 ]
Sun, YuBao [1 ,2 ]
Huang, KaiXuan [1 ]
Gu, Quan [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Digital Forens Engn Res Ctr, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Minist Educ, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Digital Forens Engn Res Ctr, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Minist Educ, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral reconstruction; Transformer; multi-scale context; spatial-spectral correlation;
D O I
10.1080/01431161.2023.2295831
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Spectrometers can obtain fine spectral reflectance of substances through high-resolution spectral sampling, which has important advantages in identifying the categories of ground substances. As a complement to high-cost spectrometers, reconstruction from RGB images provides an economical and convenient way to acquire hyperspectral images. Although the current mainstream reconstruction methods based on deep convolution network can directly learn the inverse reconstruction mapping in data-driven way, they still have shortcomings in the representation of multi-scale and long-range spatial-spectral correlations within hyperspectral images. To conquer these issues, we propose a novel multi-scale spatial-spectral Transformer network for spectral reconstruction. The proposed network consists of a cascade of multiple-scale spatial contextual module and spatial-spectral fusion Transformer module. Specifically, the multiple-scale spatial contextual module performs three-level feature extraction to learn the spatial contextual structures of each spectral band from the RGB image. The spatial-spectral fusion Transformer module employs three parallel spatial-spectral united Transformers and one fusion Transformer to enhance the spatial and spectral consistency of the reconstructed spectral image. Parallel deployment of spatial-spectral united Transformers is beneficial to reduce the over-smooth effect caused by stacking too many Transformers. Therefore, the proposed network can better recover hyperspectral images with both fine spatial structures and accurate spectral signatures. Comprehensive experiments show that our method can achieve better reconstruction performance than the state-of-the-art methods.
引用
收藏
页码:306 / 324
页数:19
相关论文
共 65 条
[1]   In Defense of Shallow Learned Spectral Reconstruction from RGB Images [J].
Aeschbacher, Jonas ;
Wu, Jiqing ;
Timofte, Radu .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :471-479
[2]   Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB [J].
Alvarez-Gila, Aitor ;
van de Weijer, Joost ;
Garrote, Estibaliz .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :480-490
[3]   NTIRE 2022 Spectral Recovery Challenge and Data Set [J].
Arad, Boaz ;
Timofte, Radu ;
Yahel, Rony ;
Morag, Nimrod ;
Bernat, Amir ;
Cai, Yuanhao ;
Lin, Jing ;
Lin, Zudi ;
Wang, Haoqian ;
Zhang, Yulun ;
Pfister, Hanspeter ;
Van Gool, Luc ;
Liu, Shuai ;
Li, Yongqiang ;
Feng, Chaoyu ;
Lei, Lei ;
Li, Jiaojiao ;
Du, Songcheng ;
Wu, Chaoxiong ;
Leng, Yihong ;
Song, Rui ;
Zhang, Mingwei ;
Song, Chongxing ;
Zhao, Shuyi ;
Lang, Zhiqiang ;
Wei, Wei ;
Zhang, Lei ;
Dian, Renwei ;
Shan, Tianci ;
Guo, Anjing ;
Feng, Chengguo ;
Liu, Jinyang ;
Agarla, Mirko ;
Bianco, Simone ;
Buzzelli, Marco ;
Celona, Luigi ;
Schettini, Raimondo ;
He, Jiang ;
Xiao, Yi ;
Xiao, Jiajun ;
Yuan, Qiangqiang ;
Li, Jie ;
Zhang, Liangpei ;
Kwon, Taesung ;
Ryu, Dohoon ;
Bae, Hyokyoung ;
Yang, Hao-Hsiang ;
Chang, Hua-En ;
Huang, Zhi-Kai ;
Chen, Wei-Ting .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :862-880
[4]   NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image [J].
Arad, Boaz ;
Timofte, Radu ;
Ben-Shahar, Ohad ;
Lin, Yi-Tun ;
Finlayson, Graham ;
Givati, Shai ;
Li, Jiaojiao ;
Wu, Chaoxiong ;
Song, Rui ;
Li, Yunsong ;
Liu, Fei ;
Lang, Zhiqiang ;
Wei, Wei ;
Zhang, Lei ;
Nie, Jiangtao ;
Zhao, Yuzhi ;
Po, Lai-Man ;
Yan, Qiong ;
Liu, Wei ;
Lin, Tingyu ;
Kim, Youngjung ;
Shin, Changyeop ;
Rho, Kyeongha ;
Kim, Sungho ;
Zhu, Zhiyu ;
Hou, Junhui ;
Sun, He ;
Ren, Jinchang ;
Fang, Zhenyu ;
Yan, Yijun ;
Peng, Hao ;
Chen, Xiaomei ;
Zhao, Jie ;
Stiebel, Tarek ;
Koppers, Simon ;
Merhof, Dorit ;
Gupta, Honey ;
Mitra, Kaushik ;
Fubara, Biebele Joslyn ;
Sedky, Mohamed ;
Dyke, Dave ;
Banerjee, Atmadeep ;
Palrecha, Akash ;
Sabarinathan ;
Uma, K. ;
Vinothini, D. Synthiya ;
Bama, B. Sathya ;
Roomi, S. M. Md Mansoor .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :1806-1822
[5]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[6]   ViViT: A Video Vision Transformer [J].
Arnab, Anurag ;
Dehghani, Mostafa ;
Heigold, Georg ;
Sun, Chen ;
Lucic, Mario ;
Schmid, Cordelia .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6816-6826
[7]  
Banerjee A, 2020, Arxiv, DOI arXiv:2004.07003
[8]  
Becerir B., 2017, J. Text. Eng. Fash. Technol, V1, DOI [DOI 10.15406/JTEFT.2017.01.00039, https://doi.org/10.15406/jteft.2017.01.00039]
[9]   Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction [J].
Cai, Yuanhao ;
Lin, Jing ;
Hu, Xiaowan ;
Wang, Haoqian ;
Yuan, Xin ;
Zhang, Yulun ;
Timofte, Radu ;
Van Gool, Luc .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :17481-17490
[10]   MST plus plus : Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction [J].
Cai, Yuanhao ;
Lin, Jing ;
Lin, Zudi ;
Wang, Haoqian ;
Zhang, Yulun ;
Pfister, Hanspeter ;
Timofte, Radu ;
Van Gool, Luc .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :744-754