A look at FPF rings

被引:1
作者
Ghashghaei, E. [1 ]
Kosan, M. Tamer [2 ,3 ]
Quynh, T. Cong [4 ]
Thuyet, L. Van [5 ]
机构
[1] Shahid Chamran Univ Ahvaz, Dept Math, Ahvaz, Iran
[2] Gazi Univ, Fac Sci, Dept Math, Ankara, Turkiye
[3] Ostim Tech Univ, Fac Engn, Dept Comp Engn, Ankara, Turkiye
[4] Univ Danang, Univ Sci & Educ, Dept Math, 459 Ton Duc Thang, Danang City, Vietnam
[5] Hue Univ, Coll Educ, Dept Math, 34 Le Loi, Hue City, Vietnam
关键词
Baer ring; ring of continuous functions; FPF ring; pi-coherent ring; pi-semihereditary ring; ENDOMORPHISM-RINGS; MODULES;
D O I
10.1142/S0219498825501609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An error in Corollary 9.32 of [C. Faith, Rings and Things and a Fine Array of Twentieth Century Associative Algebra, Mathematical Surveys and Monographs, Vol. 65 (American Mathematical Society, Providence, RI, 2004)], motivated us to consider again FPF rings which were initiated by Faith in the 1970s. In this paper, it is shown that a commutative ring R is reduced FPF if and only if it is pi-semihereditary. We show that when a semiperfect ring with a strongly right bounded basic ring with right and left Ore conditions, is an FPF ring. After some general results, the article focuses on rings of continuous functions. We give some algebraic characterizations for a C(X) to be FPF and retrieve a result of Jorge Martinez. Also, we show that a space X is fraction-dense if and only if Qcl(X) is a continuous ring.
引用
收藏
页数:15
相关论文
共 44 条
  • [1] Anderson F. W., 1992, Rings and Categories of Modules
  • [2] Ring coproducts embedded in power-series rings
    Ara, Pere
    Dicks, Warren
    [J]. FORUM MATHEMATICUM, 2015, 27 (03) : 1539 - 1567
  • [3] C(X): Something old and something new
    Azarpanah, F.
    Ghashghaei, E.
    Ghoulipour, M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (01) : 185 - 206
  • [4] Azarpanah F., 2002, ITAL J PURE APPL MAT, V12, P155
  • [5] Nonsingular CS-rings coincide with tight PP rings
    Beidar, KI
    Jain, SK
    Kanwar, P
    [J]. JOURNAL OF ALGEBRA, 2004, 282 (02) : 626 - 637
  • [6] Maximal d-subgroups and ultrafilters
    Bhattacharjee P.
    McGovern W.W.
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (3): : 421 - 440
  • [7] Birkenmeier G. F., 2013, EXTENSIONS RINGS MOD
  • [8] COHERENCE FOR POLYNOMIAL-RINGS
    CAMILLO, V
    [J]. JOURNAL OF ALGEBRA, 1990, 132 (01) : 72 - 76
  • [9] ENDOMORPHISM-RINGS OF MODULES OVER NON-SINGULAR CS RINGS
    CHATTERS, AW
    KHURI, SM
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (JUN): : 434 - 444
  • [10] Clark J., 1991, VIETNAM J MATH, V19, P4