Generating daily 100 m resolution land surface temperature estimates continentally using an unbiased spatiotemporal fusion approach

被引:23
作者
Yu, Yi [1 ,2 ]
Renzullo, Luigi J. [1 ]
Mcvicar, Tim R. [3 ]
Malone, Brendan P. [2 ]
Tian, Siyuan [1 ]
机构
[1] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT 2601, Australia
[2] CSIRO Agr & Food, Canberra, ACT 2601, Australia
[3] CSIRO Entomol, Canberra, ACT 2601, Australia
关键词
Land surface temperature; Spatiotemporal fusion; ESTARFM; Bias correction; MODIS; Landsat; ECOSTRESS; INFRARED-SENSOR TIRS; VEGETATION INDEX; SOIL-MOISTURE; MODIS; MODEL; EVAPOTRANSPIRATION; REFLECTANCE; RETRIEVAL; ALGORITHM; DISCRIMINATION;
D O I
10.1016/j.rse.2023.113784
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine spatial resolution (i.e., <= 100 m) land surface temperature (LST) data are crucial to study heterogeneous landscapes (e.g., agricultural and urban). Some well-known spatiotemporal fusion methods like the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and the Enhanced STARFM (ESTARFM), which were originally developed to fuse surface reflectance data, may not be suitable for direct application in LST studies due to the high sub-diurnal dynamics of LST. Furthermore, the effectiveness of spatiotemporal fusion methods for LST data has not been thoroughly evaluated in previous studies that only focused on relatively small spatiotemporal extents. To address these limitations, we proposed a variant of ESTARFM, referred to as the unbiased ESTARFM (ubESTARFM), specifically designed to accommodate the high temporal dynamics of LST to generate fineresolution LST estimates. We evaluated ubESTARFM and ESTARFM against in-situ LST and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST across 12 regions throughout Australia, encompassing various land covers and environments. Independent validation showed that ubESTARFM had a bias of 2.55 K, unbiased root mean squared error (ubRMSE) of 2.57 K, and Pearson correlation coefficient (R) of 0.95 against the in-situ LST over 11,290 observations at the 12 sites, all of which were considerably better than those calculated for ESTARFM, being a bias of 4.73 K, ubRMSE of 3.80 K and R of 0.92. When compared to ECOSTRESS data, ubESTARFM LST had a bias of -1.69 K, ubRMSE of 2.00 K, and R of 0.70 over 43 near clear-sky scenes, while ESTARFM LST had a bias of 1.79 K, ubRMSE of 2.68 K, and R of 0.59. Overall, our results demonstrated that ubESTARFM can avoid systematic bias accumulation, substantially reduce uncertainty deviation, and maintain a good level of correlation with validation datasets when compared to ESTARFM. A further assessment underscored the potential of ubESTARFM for application using LST data acquired from geostationary platforms (e.g., Himawari-8), with a mean ubRMSE (R) of 2.22 K (0.97) against in-situ LST over 1327 observations at 3 sites from southeast Australia at the overpass time of MODIS/Terra. This promising method leverages reliable numeric values from coarse-resolution LST while borrowing spatial heterogeneity from fine-resolution LST and has the potential to be coupled with energy balance and/or radiative transfer models thus enabling better farm and/or regional-scale water management strategies to be implemented. Furthermore, both the input and generated LST data, encompassing a comprehensive spatial extent over diverse land covers and climatic conditions, are publicly available for benchmarking future algorithmic refinements.
引用
收藏
页数:20
相关论文
共 87 条
[1]   Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale [J].
Abowarda, Ahmed Samir ;
Bai, Liangliang ;
Zhang, Caijin ;
Long, Di ;
Li, Xueying ;
Huang, Qi ;
Sun, Zhangli .
REMOTE SENSING OF ENVIRONMENT, 2021, 255
[2]   A vegetation index based technique for spatial sharpening of thermal imagery [J].
Agam, Nurit ;
Kustas, William P. ;
Anderson, Martha C. ;
Li, Fuqin ;
Neale, Christopher M. U. .
REMOTE SENSING OF ENVIRONMENT, 2007, 107 (04) :545-558
[3]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[4]   A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales [J].
Anderson, M. C. ;
Norman, J. M. ;
Kustas, W. P. ;
Houborg, R. ;
Starks, P. J. ;
Agam, N. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (12) :4227-4241
[5]   Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales [J].
Anderson, Martha C. ;
Yang, Yang ;
Xue, Jie ;
Knipper, Kyle R. ;
Yang, Yun ;
Gao, Feng ;
Hain, Chris R. ;
Kustas, William P. ;
Cawse-Nicholson, Kerry ;
Hulley, Glynn ;
Fisher, Joshua B. ;
Alfieri, Joseph G. ;
Meyers, Tilden P. ;
Prueger, John ;
Baldocchi, Dennis D. ;
Rey-Sanchez, Camilo .
REMOTE SENSING OF ENVIRONMENT, 2021, 252
[6]   Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration [J].
Barsi, Julia A. ;
Schott, John R. ;
Hook, Simon J. ;
Raqueno, Nina G. ;
Markham, Brian L. ;
Radocinski, Robert G. .
REMOTE SENSING, 2014, 6 (11) :11607-11626
[7]   Present and future Koppen-Geiger climate classification maps at 1-km resolution [J].
Beck, Hylke E. ;
Zimmermann, Niklaus E. ;
McVicar, Tim R. ;
Vergopolan, Noemi ;
Berg, Alexis ;
Wood, Eric F. .
SCIENTIFIC DATA, 2018, 5
[8]   An introduction to the Australian and New Zealand flux tower network - OzFlux [J].
Beringer, Jason ;
Hutley, Lindsay B. ;
McHugh, Ian ;
Arndt, Stefan K. ;
Campbell, David ;
Cleugh, Helen A. ;
Cleverly, James ;
Resco de Dios, Victor ;
Eamus, Derek ;
Evans, Bradley ;
Ewenz, Cacilia ;
Grace, Peter ;
Griebel, Anne ;
Haverd, Vanessa ;
Hinko-Najera, Nina ;
Huete, Alfredo ;
Isaac, Peter ;
Kanniah, Kasturi ;
Leuning, Ray ;
Liddell, Michael J. ;
Macfarlane, Craig ;
Meyer, Wayne ;
Moore, Caitlin ;
Pendall, Elise ;
Phillips, Alison ;
Phillips, Rebecca L. ;
Prober, Suzanne M. ;
Restrepo-Coupe, Natalia ;
Rutledge, Susanna ;
Schroder, Ivan ;
Silberstein, Richard ;
Southall, Patricia ;
Yee, Mei Sun ;
Tapper, Nigel J. ;
van Gorsel, Eva ;
Vote, Camilla ;
Walker, Jeff ;
Wardlaw, Tim .
BIOGEOSCIENCES, 2016, 13 (21) :5895-5916
[9]   An Introduction to Himawari-8/9-Japan's New-Generation Geostationary Meteorological Satellites [J].
Bessho, Kotaro ;
Date, Kenji ;
Hayashi, Masahiro ;
Ikeda, Akio ;
Imai, Takahito ;
Inoue, Hidekazu ;
Kumagai, Yukihiro ;
Miyakawa, Takuya ;
Murata, Hidehiko ;
Ohno, Tomoo ;
Okuyama, Arata ;
Oyama, Ryo ;
Sasaki, Yukio ;
Shimazu, Yoshio ;
Shimoji, Kazuki ;
Sumida, Yasuhiko ;
Suzuki, Masuo ;
Taniguchi, Hidetaka ;
Tsuchiyama, Hiroaki ;
Uesawa, Daisaku ;
Yokota, Hironobu ;
Yoshida, Ryo .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2016, 94 (02) :151-183
[10]  
Brooks SP, 1998, J ROY STAT SOC D-STA, V47, P69, DOI 10.1111/1467-9884.00117