Genome editing for sickle cell disease: still time to correct?

被引:7
作者
Ceglie, Giulia [1 ,2 ]
Lecis, Marco [1 ,2 ,3 ]
Canciani, Gabriele [1 ,4 ]
Algeri, Mattia [1 ]
Frati, Giacomo [1 ]
机构
[1] Osped Pediatr Bambino Gesu, Dept Oncol Hematol, Cell & Gene Therapy Hematol Disorders Unit, Rome, Italy
[2] Univ Roma Tor Vergata, Dept Syst Med, Rome, Italy
[3] Modena Univ Hosp, Pediat Unit, Modena, Italy
[4] Univ Roma Tor Vergata, Residency Sch Pediat, Rome, Italy
关键词
sickle cell disease; gene editing; fetal hemoglobin reactivation; globin genes regulation; gene therapy; CRISPR/Cas9; BETA-GLOBIN GENE; HEMATOPOIETIC STEM; FETAL-HEMOGLOBIN; HEREDITARY PERSISTENCE; CRISPR-CAS9; MUTATION; ENHANCER; THERAPY; BASE; HBG2;
D O I
10.3389/fped.2023.1249275
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Sickle cell disease (SCD) is an inherited blood disorder, due to a single point mutation in the beta-globin gene (HBB) leading to multisystemic manifestations and it affects millions of people worldwide. The monogenic nature of the disease and the availability of autologous hematopoietic stem cells (HSCs) make this disorder an ideal candidate for gene modification strategies. Notably, significant advances in the field of gene therapy and genome editing that took place in the last decade enabled the possibility to develop several strategies for the treatment of SCD. These curative approaches were firstly based on the correction of disease-causing mutations holding the promise for a specific, effective and safe option for patients. Specifically, gene-editing approaches exploiting the homology directed repair pathway were investigated, but soon their limited efficacy in quiescent HSC has curbed their wider development. On the other hand, a number of studies on globin gene regulation, led to the development of several genome editing strategies based on the reactivation of the fetal gamma-globin gene (HBG) by nuclease-mediated targeting of HBG-repressor elements. Although the efficiency of these strategies seems to be confirmed in preclinical and clinical studies, very little is known about the long-term consequences of these modifications. Moreover, the potential genotoxicity of these nuclease-based strategies must be taken into account, especially when associated with high targeting rates. The recent introduction of nuclease-free genome editing technologies brought along the potential for safer strategies for SCD gene correction, which may also harbor significant advantages over HBG-reactivating ones. In this Review, we discuss the recent advances in genome editing strategies for the correction of SCD-causing mutations trying to recapitulate the promising strategies currently available and their relative strengths and weaknesses.
引用
收藏
页数:10
相关论文
共 90 条
[1]   Large deletions induced by Cas9 cleavage [J].
Adikusuma, Fatwa ;
Piltz, Sandra ;
Corbett, Mark A. ;
Turvey, Michelle ;
McColl, Shaun R. ;
Helbig, Karla J. ;
Beard, Michael R. ;
Hughes, James ;
Pomerantz, Richard T. ;
Thomas, Paul Q. .
NATURE, 2018, 560 (7717) :E8-E9
[2]   Activating transcription factor 4 [J].
Ameri, Kurosh ;
Harris, Adrian L. .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2008, 40 (01) :14-21
[3]   Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus [J].
Antoniani, Chiara ;
Meneghini, Vasco ;
Lattanzi, Annalisa ;
Felix, Tristan ;
Romano, Oriana ;
Magrin, Elisa ;
Weber, Leslie ;
Pavani, Giulia ;
El Hoss, Sara ;
Kurita, Ryo ;
Nakamura, Yukio ;
Cradick, Thomas J. ;
Lundberg, Ante S. ;
Porteus, Matthew ;
Amendola, Mario ;
El Nemer, Wassim ;
Cavazzana, Marina ;
Mavilio, Fulvio ;
Miccio, Annarita .
BLOOD, 2018, 131 (17) :1960-1973
[4]   Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression [J].
Antoniou, Panagiotis ;
Hardouin, Giulia ;
Martinucci, Pierre ;
Frati, Giacomo ;
Felix, Tristan ;
Chalumeau, Anne ;
Fontana, Letizia ;
Martin, Jeanne ;
Masson, Cecile ;
Brusson, Megane ;
Maule, Giulia ;
Rosello, Marion ;
Giovannangeli, Carine ;
Abramowski, Vincent ;
De Villartay, Jean-Pierre ;
Concordet, Jean-Paul ;
Del Bene, Filippo ;
El Nemer, Wassim ;
Amendola, Mario ;
Cavazzana, Marina ;
Cereseto, Anna ;
Romano, Oriana ;
Miccio, Annarita .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Base and Prime Editing Technologies for Blood Disorders [J].
Antoniou, Panagiotis ;
Miccio, Annarita ;
Brusson, Megane .
FRONTIERS IN GENOME EDITING, 2021, 3
[6]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[7]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[8]   An Erythroid Enhancer of BCL11A Subject to Genetic Variation Determines Fetal Hemoglobin Level [J].
Bauer, Daniel E. ;
Kamran, Sophia C. ;
Lessard, Samuel ;
Xu, Jian ;
Fujiwara, Yuko ;
Lin, Carrie ;
Shao, Zhen ;
Canver, Matthew C. ;
Smith, Elenoe C. ;
Pinello, Luca ;
Sabo, Peter J. ;
Vierstra, Jeff ;
Voit, Richard A. ;
Yuan, Guo-Cheng ;
Porteus, Matthew H. ;
Stamatoyannopoulos, John A. ;
Lettre, Guillaume ;
Orkin, Stuart H. .
SCIENCE, 2013, 342 (6155) :253-257
[9]  
bluebird bio Inc, bluebird bio provides updated findings from reported case of acute myeloid leukemia (AML) in lentiglobin for sickle cell disease (SCD) gene therapy program
[10]   Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies [J].
Bodai, Zsolt ;
Bishop, Alena L. ;
Gantz, Valentino M. ;
Komor, Alexis C. .
NATURE COMMUNICATIONS, 2022, 13 (01)