MULTI HYBRID EXTRACTOR NETWORK FOR 3D HUMAN POSE ESTIMATION

被引:0
作者
Yuan, Zhixiang [1 ]
Zhang, Xitie [1 ]
Wu, Suping [1 ]
Zhang, Boyang [1 ]
Peng, Yuxin [1 ]
Wang, Bing [1 ]
机构
[1] Ningxia Univ, Sch Informat Engn, Yinchuan, Ningxia, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
基金
中国国家自然科学基金;
关键词
3D human pose estimation; Transformer; CNN; Encoder-decoder network;
D O I
10.1109/ICIP49359.2023.10222098
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular image or video based 3D human pose estimation remains a very challenging task because of depth ambiguity and occluded joints. To relieve this limitation, we propose a Multiple Hybrid Extraction Network (MHENet), which obtains three different representations of pose hypotheses features by multiple hybrid extractors with different structures, and uses pose interaction and fusion to obtain accurate 3D pose. The Hybrid Extraction Module obtains three hypotheses features: base features correspond to structural information, diverse features correspond to detail information, and condensed features correspond to action information. Hypotheses Interaction Fusion Modul builds relationships across hypotheses feature to generate more accurate 3D poses. Extensive qualitative and quantitative experimental results on a large-scale publicly available dataset demonstrate that our approach achieves competitive performance compared to state-of-the-art methods. The code will be made publicly.
引用
收藏
页码:3170 / 3174
页数:5
相关论文
共 18 条
[1]  
Bishop C. M., 1994, Mixture density networks, DOI DOI 10.1007/978-3-322-81570-58
[2]   Exploiting Spatial-temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks [J].
Cai, Yujun ;
Ge, Liuhao ;
Liu, Jun ;
Cai, Jianfei ;
Cham, Tat-Jen ;
Yuan, Junsong ;
Thalmann, Nadia Magnenat .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2272-2281
[3]   Cascaded Pyramid Network for Multi-Person Pose Estimation [J].
Chen, Yilun ;
Wang, Zhicheng ;
Peng, Yuxiang ;
Zhang, Zhiqiang ;
Yu, Gang ;
Sun, Jian .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7103-7112
[4]   PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation [J].
Gong, Kehong ;
Zhang, Jianfeng ;
Feng, Jiashi .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8571-8580
[5]   Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments [J].
Ionescu, Catalin ;
Papava, Dragos ;
Olaru, Vlad ;
Sminchisescu, Cristian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (07) :1325-1339
[6]  
Kirwan Grainne, 2016, INTRO CYBERPSYCHOLOG, P2
[7]   MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation [J].
Li, Wenhao ;
Liu, Hong ;
Tang, Hao ;
Wang, Pichao ;
Van Gool, Luc .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :13137-13146
[8]   Attention Mechanism Exploits Temporal Contexts: Real-time 3D Human Pose Reconstruction [J].
Liu, Ruixu ;
Shen, Ju ;
Wang, He ;
Chen, Chen ;
Cheung, Sen-ching ;
Asari, Vijayan .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :5063-5072
[9]  
Martinez Julieta, 2017, P IEEE INT C COMP VI, P2640
[10]   3D human pose estimation in video with temporal convolutions and semi-supervised training [J].
Pavllo, Dario ;
Feichtenhofer, Christoph ;
Grangier, David ;
Auli, Michael .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7745-7754