共 50 条
Preparation of high-performance supercapacitor electrode with nanocomposite of CuO/NCNO flower-like
被引:30
作者:
Sohouli, Esmail
[1
]
Teymourinia, Hakimeh
[2
,3
]
Ramazani, Ali
[2
,3
]
Adib, Koroush
[1
]
机构:
[1] Univ Imam Hossein, Fac Sci, Dept Chem, Tehran, Iran
[2] Univ Zanjan, Res Inst Modern Biol Tech RIMBT, Dept Biotechnol, Zanjan 4537138791, Iran
[3] Univ Zanjan, Fac Sci, Dept Chem, Zanjan 4537138791, Iran
基金:
英国科研创新办公室;
关键词:
FACILE SYNTHESIS;
NANOPARTICLES;
COMPOSITE;
D O I:
10.1038/s41598-023-43430-1
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Due to the importance of energy storage systems based on supercapacitors, various studies have been conducted. In this research CuO, NCNO and the flower like CuO/NCNO have been studied as a novel materials in this field. The resulte showed that the synthesized CuO nanostructutes have flower like morphology which studied by FE-SEM analisis. Further, the XRD pattern confirmed the crystalline properties of the CuO/NCNO nanocomposite, and the Raman verified the functional groups and vibrations of the components of CuO/NCNO nanocomposite. In a two-electrode system at a current density of 4 A/g, the capacitance, power density, and energy density were 450 F/g, 3200 W/kg, and 98 Wh/kg, respectively. The charge transfer resistances of CuO and NCNO/CuO electrodes obtained 8 and 2 omega respectively, which show that the conductivity and supercapacitive properties of nanocomposite are better than pure components. Also, the stability and low charge transfer resistance are other advantages obtained in a two-symmetrical electrode investigation. The stability investigation showed that after 3000 consecutive cycles, only 4% of the initial capacitance of the CuO/NCNO electrode decreased.
引用
收藏
页数:14
相关论文
共 50 条