A simple proof of the refined sharp weighted Caffarelli-Kohn-Nirenberg inequalities

被引:0
作者
Kendell, Steven [1 ]
Lam, Nguyen [1 ]
Smith, Dylan [1 ]
White, Austin [1 ]
Wiseman, Parker [1 ]
机构
[1] Mem Univ Newfoundland, Sch Sci & Environm, Grenfell Campus, Corner Brook, NF A2H 5G4, Canada
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
uncertainty principle; Caffarelli-Kohn-Nirenberg inequalities; sharp constants; optimizers;
D O I
10.3934/math.20231431
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provided a simple and direct proof of an improved version of the main results of the paper by Catrina and Costa (2009).
引用
收藏
页码:27983 / 27988
页数:6
相关论文
共 21 条
[1]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]   Sharp weighted-norm inequalities for functions with compact support in RN \ {0} [J].
Catrina, Florin ;
Costa, David G. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :164-182
[4]   Caffarelli-Kohn-Nirenberg inequalities for curl-free vector fields and second order derivatives [J].
Cazacu, Cristian ;
Flynn, Joshua ;
Lam, Nguyen .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (04)
[5]   Sharp second order uncertainty principles [J].
Cazacu, Cristian ;
Flynn, Joshua ;
Lam, Nguyen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (10)
[6]   Short proofs of refined sharp Caffarelli-Kohn-Nirenberg inequalities [J].
Cazacu, Cristian ;
Flynn, Joshua ;
Lam, Nguyen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 :533-549
[7]   Maximizers for Fractional Caffarelli-Kohn-Nirenberg and Trudinger-Moser Inequalities on the Fractional Sobolev Spaces [J].
Chen, Lu ;
Lu, Guozhen ;
Zhang, Caifeng .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) :3556-3582
[8]   Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities [J].
Costa, David G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :311-317
[9]   Improved Caffarelli-Kohn-Nirenb erg inequalities in unit ball and sharp constants in dimension three [J].
Dan, Su ;
Yang, Qiaohua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 234
[10]   GAGLIARDO-NIRENBERG TYPE INEQUALITIES ON LORENTZ, MARCINKIEWICZ AND WEAK-L∞ SPACES [J].
Dao, Anh Nguyen ;
Lam, Nguyen ;
Lu, Guozhen .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (07) :2889-2900