Mapping microstructure to shock-induced temperature fields using deep learning

被引:8
作者
Li, Chunyu [1 ]
Verduzco, Juan Carlos [1 ]
Lee, Brian H. [1 ]
Appleton, Robert J. [1 ]
Strachan, Alejandro [1 ]
机构
[1] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
关键词
FORCE-FIELD; DYNAMICS; MODEL;
D O I
10.1038/s41524-023-01134-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The response of materials to shock loading is important to planetary science, aerospace engineering, and energetic materials. Thermally activated processes, including chemical reactions and phase transitions, are significantly accelerated by energy localization into hotspots. These result from the interaction of the shockwave with the materials' microstructure and are governed by complex, coupled processes, including the collapse of porosity, interfacial friction, and localized plastic deformation. These mechanisms are not fully understood and the lack of models limits our ability to predict shock to detonation transition from chemistry and microstructure alone. We demonstrate that deep learning can be used to predict the resulting shock-induced temperature fields in composite materials obtained from large-scale molecular dynamics simulations with the initial microstructure as the only input. The accuracy of the Microstructure-Informed Shock-induced Temperature net (MISTnet) model is higher than the current state of the art and its evaluation requires a fraction of the computation cost.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Uncertainties in the predictions of thermo-physical properties of thermo-plastic polymers via molecular dynamics [J].
Alzate-Vargas, Lorena ;
Fortunato, Michael E. ;
Haley, Benjamin ;
Li, Chunyu ;
Colina, Coray M. ;
Strachan, Alejandro .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2018, 26 (06)
[2]   The dynamics of detonation in explosive systems [J].
Bdzil, John B. ;
Stewart, D. Scott .
ANNUAL REVIEW OF FLUID MECHANICS, 2007, 39 :263-292
[3]   Shock-induced transformations in crystalline RDX: A uniaxial constant-stress Hugoniostat molecular dynamics simulation study [J].
Bedrov, Dmitry ;
Hooper, Justin B. ;
Smith, Grant D. ;
Sewell, Thomas D. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (03)
[4]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[5]   Shock-induced shear bands in an energetic molecular crystal: Application of shock-front absorbing boundary conditions to molecular dynamics simulations [J].
Cawkwell, M. J. ;
Sewell, Thomas D. ;
Zheng, Lianqing ;
Thompson, Donald L. .
PHYSICAL REVIEW B, 2008, 78 (01)
[6]   Recent advances and applications of deep learning methods in materials science [J].
Choudhary, Kamal ;
DeCost, Brian ;
Chen, Chi ;
Jain, Anubhav ;
Tavazza, Francesca ;
Cohn, Ryan ;
Park, Cheol Woo ;
Choudhary, Alok ;
Agrawal, Ankit ;
Billinge, Simon J. L. ;
Holm, Elizabeth ;
Ong, Shyue Ping ;
Wolverton, Chris .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[7]   Carbon clusters formed from shocked benzene [J].
Dattelbaum, D. M. ;
Watkins, E. B. ;
Firestone, M. A. ;
Huber, R. C. ;
Gustavsen, R. L. ;
Ringstrand, B. S. ;
Coe, J. D. ;
Podlesak, D. ;
Gleason, A. E. ;
Lee, H. J. ;
Galtier, E. ;
Sandberg, R. L. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Machine Learning Interatomic Potentials as Emerging Tools for Materials Science [J].
Deringer, Volker L. ;
Caro, Miguel A. ;
Csanyi, Gabor .
ADVANCED MATERIALS, 2019, 31 (46)
[9]   Continuum and molecular dynamics simulations of pore collapse in shocked β-tetramethylene tetranitramine (β-HMX) single crystals [J].
Duarte, Camilo A. ;
Li, Chunyu ;
Hamilton, Brenden W. ;
Strachan, Alejandro ;
Koslowski, Marisol .
JOURNAL OF APPLIED PHYSICS, 2021, 129 (01)
[10]   Multiscale Theory, Simulation, and Experiment in Energetic Materials: Getting Right Answers for Correct Reasons [J].
Fried, Laurence E. ;
Sewell, Tommy ;
Udaykumar, H. S. .
PROPELLANTS EXPLOSIVES PYROTECHNICS, 2020, 45 (02) :168-168