Fixed-time fault-tolerant control of manipulator systems based on sliding mode observer

被引:4
作者
Li, Dan [1 ]
Chen, Ming [1 ]
Peng, Kaixiang [2 ]
Wu, Libing [3 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan, Liaoning, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Automat, Beijing, Peoples R China
[3] Univ Sci & Technol Liaoning, Sch Sci, Anshan, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
fault-tolerant control; fixed-time control; NFTSM; sliding mode observer; trajectory tracking; NONLINEAR-SYSTEMS; CONTROL DESIGN; TRACKING; ORDER;
D O I
10.1002/rnc.6980
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A fixed-time fault-tolerant control scheme based on sliding mode observer is proposed, which makes the system more stable and stronger anti-jamming ability. In our design, its distinct characteristic is to combine the passive fault-tolerant control and non-singular fast terminal sliding mode (NFTSM). And it ensures that the system states can converge to a very small neighborhood near the equilibrium point in a fixed time no matter in normal condition or fault condition. In addition, a novel sliding-mode observer and a fast variable power reaching law are added to make the system converge faster and chattering smaller. Finally, the computer simulation results of a two-joint manipulator demonstrate the feasibility of the proposed strategy.
引用
收藏
页码:440 / 455
页数:16
相关论文
共 36 条
[1]   An Adaptive Terminal Sliding Mode Control for Robot Manipulators With Non-Singular Terminal Sliding Surface Variables [J].
Anh Tuan Vo ;
Kang, Hee-Jun .
IEEE ACCESS, 2019, 7 :6701-6712
[2]   Finite Time Fractional-order Adaptive Backstepping Fault Tolerant Control of Robotic Manipulator [J].
Anjum, Zeeshan ;
Guo, Yu .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (01) :301-310
[3]   Robotic manipulator control based on an optimal fractional-order fuzzy PID approach: SiL real-time simulation [J].
Ardeshiri, Reza Rouhi ;
Khooban, Mohammad Hassan ;
Noshadi, Amin ;
Vafamand, Navid ;
Rakhshan, Mohsen .
SOFT COMPUTING, 2020, 24 (05) :3849-3860
[4]  
Bhat SP., 1995, P 1995 AM CONTR C AC
[5]   Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches [J].
Chalanga, Asif ;
Kamal, Shyam ;
Fridman, Leonid M. ;
Bandyopadhyay, Bijnan ;
Moreno, Jaime A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (06) :3677-3685
[6]   A nonlinear disturbance observer for robotic manipulators [J].
Chen, WH ;
Ballance, DJ ;
Gawthrop, PJ ;
O'Reilly, J .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (04) :932-938
[7]   Second-order sliding-mode observer for mechanical systems [J].
Davila, J ;
Fridman, L ;
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1785-1789
[8]   Predictive Uncertainty Estimation Using Deep Learning for Soft Robot Multimodal Sensing [J].
Ding, Ze Yang ;
Loo, Junn Yong ;
Baskaran, Vishnu Monn ;
Nurzaman, Surya Girinatha ;
Tan, Chee Pin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) :951-957
[9]   Adaptive Type-2 Fuzzy Neural Network Inherited Terminal Sliding Mode Control for Power Quality Improvement [J].
Hou, Shixi ;
Chu, Yundi ;
Fei, Juntao .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (11) :7564-7574
[10]   Observer-Based Adaptive Sliding Mode Control for Nonlinear Stochastic Markov Jump Systems via T-S Fuzzy Modeling: Applications to Robot Arm Model [J].
Jiang, Baoping ;
Karimi, Hamid Reza ;
Yang, Shichun ;
Gao, Cunchen ;
Kao, Yonggui .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (01) :466-477