Multiple solutions for a class of anisotropic p?-Laplacian problems

被引:5
作者
Bonanno, G. [1 ]
D'Agui, G. [1 ]
Sciammetta, A. [2 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] Univ Palermo, Dept Math & Comp Sci, I-90123 Palermo, Italy
关键词
Anisotropic operator; Nonlinear elliptic equations; Critical point theory; DOUBLE-PHASE PROBLEMS; EIGENVALUE PROBLEM; SOBOLEV SPACES; SINGULAR ADVECTIONS; EXISTENCE; DIFFUSIONS; THEOREM;
D O I
10.1186/s13661-023-01774-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present some existence and multiplicity results for a class of anisotropic p(?)-Laplacian problems with Dirichlet boundary conditions. In particular, the existence of three solutions is pointed out. The approach is based on variational methods and our main tool is a three critical point theorem.
引用
收藏
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 1981, Beitrge zur Anal
[2]  
[Anonymous], 1979, Beitr. Anal
[3]  
Antontsev S. N., 2002, Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics, V48
[4]   Three solutions for a quasilinear two-point boundary-value problem involving the one-dimensional p-laplacian [J].
Averna, D ;
Bonanno, G .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :257-270
[5]   On a class of fully anisotropic elliptic equations [J].
Barletta, Giuseppina .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
[6]   Dirichlet problems for fully anisotropic elliptic equations [J].
Barletta, Giuseppina ;
Cianchi, Andrea .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (01) :25-60
[7]   The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p→∞ [J].
Belloni, M ;
Kawohl, B .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (01) :28-52
[8]   On some anisotropic reaction-diffusion systems with L1-data modeling an epidemic the propagation of disease [J].
Bendahmane, M ;
Langlais, M ;
Saad, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :617-636
[9]   An Approximation Result in Generalized Anisotropic Sobolev Spaces and Applications [J].
Bendahmane, Mostafa ;
Chrif, Moussa ;
El Manouni, Said .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2011, 30 (03) :341-353
[10]  
Bonanno G, 2021, ADV DIFFERENTIAL EQU, V26, P229