Accelerating reaction modeling using dynamic flow experiments, part 1: design space exploration

被引:10
作者
Sagmeister, Peter [1 ,2 ]
Schiller, Christine [1 ,2 ]
Weiss, Peter [2 ]
Silber, Klara [1 ,2 ]
Knoll, Sebastian [3 ]
Horn, Martin [3 ]
Hone, Christopher A. [1 ,2 ]
Williams, Jason D. [1 ,2 ]
Kappe, C. Oliver [1 ,2 ]
机构
[1] Res Ctr Pharmaceut Engn GmbH RCPE, Ctr Continuous Flow Synth & Proc CC FLOW, Inffeldgasse 13, A-8010 Graz, Austria
[2] Karl Franzens Univ Graz, Inst Chem, NAWI Graz, Heinrichstr 28, A-8010 Graz, Austria
[3] Graz Univ Technol, Inst Automat & Control, Inffeldgasse 21b, A-8010 Graz, Austria
关键词
THROUGHPUT EXPERIMENTATION; OPTIMIZATION; CHEMISTRY; DISCOVERY; REACTORS;
D O I
10.1039/d3re00243h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As organic chemistry becomes an increasingly data-rich field, there is a need for methods to rapidly build and parameterize models for further development. We demonstrate the parameterization of kinetic models for a catalytic reaction using three different experimental approaches: 1) steady state experiments; 2) dynamic experiments altering residence time only; 3) multi-ramp experiments, where all variables are altered simultaneously. The best agreement in a range of validation experiments was achieved using the model parameterized in the multi-ramp experiment, which also required the shortest experimental time. Further validation was then performed against a self-optimization experiment, demonstrating this as an effective method for developing empirically accurate kinetic models. The validated model could then be used for further in silico optimization and for guiding scale-up studies.
引用
收藏
页码:2818 / 2825
页数:8
相关论文
共 54 条
[1]   Predicting reaction performance in C-N cross-coupling using machine learning [J].
Ahneman, Derek T. ;
Estrada, Jesus G. ;
Lin, Shishi ;
Dreher, Spencer D. ;
Doyle, Abigail G. .
SCIENCE, 2018, 360 (6385) :186-190
[2]   Advancement in Organic Synthesis Through High Throughput Experimentation [J].
Biyani, Shruti A. ;
Moriuchi, Yuta W. ;
Thompson, David H. .
CHEMISTRYMETHODS, 2021, 1 (07) :323-339
[3]  
Bradford E, 2018, J GLOBAL OPTIM, V71, P407, DOI 10.1007/s10898-018-0609-2
[4]   Continuous Preparation of Arylmagnesium Reagents in Flow with Inline IR Monitoring [J].
Brodmann, Tobias ;
Koos, Peter ;
Metzger, Albrecht ;
Knochel, Paul ;
Ley, Steven V. .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2012, 16 (05) :1102-1113
[5]   Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry [J].
Buglioni, Laura ;
Raymenants, Fabian ;
Slattery, Aidan ;
Zondag, Stefan D. A. ;
Noel, Timothy .
CHEMICAL REVIEWS, 2022, 122 (02) :2752-2906
[6]   Pharmaceutical Process Chemistry: Evolution of a Contemporary Data-Rich Laboratory Environment [J].
Caron, Stephane ;
Thomson, Nicholas M. .
JOURNAL OF ORGANIC CHEMISTRY, 2015, 80 (06) :2943-2958
[7]   Automation isn't automatic [J].
Christensen, Melodie ;
Yunker, Lars P. E. ;
Shiri, Parisa ;
Zepel, Tara ;
Prieto, Paloma L. ;
Grunert, Shad ;
Bork, Finn ;
Hein, Jason E. .
CHEMICAL SCIENCE, 2021, 12 (47) :15473-15490
[8]   Automated self-optimisation of multi-step reaction and separation processes using machine learning [J].
Clayton, Adam D. ;
Schweidtmann, Artur M. ;
Clemens, Graeme ;
Manson, Jamie A. ;
Taylor, Connor J. ;
Nino, Carlos G. ;
Chamberlain, Thomas W. ;
Kapur, Nikil ;
Blacker, A. John ;
Lapkin, Alexei A. ;
Bourne, Richard A. .
CHEMICAL ENGINEERING JOURNAL, 2020, 384 (384)
[9]   Algorithms for the self-optimisation of chemical reactions [J].
Clayton, Adam D. ;
Manson, Jamie A. ;
Taylor, Connor J. ;
Chamberlain, Thomas W. ;
Taylor, Brian A. ;
Clemens, Graeme ;
Bourne, Richard A. .
REACTION CHEMISTRY & ENGINEERING, 2019, 4 (09) :1545-1554
[10]  
Epps RW, 2021, CHEM-US, V7, P2541