Lipschitz estimates for rough fractional multilinear integral operators on variable local generalized Morrey spaces

被引:0
作者
Akbulut, A. [1 ]
Ekincioglu, I. [2 ,3 ]
Khaligova, S. Z. [4 ]
机构
[1] Kirsehir Ahi Evran Univ, Dept Math, TR-40100 Kirsehir, Turkiye
[2] Dumlupinar Univ, Dept Math, Kutahya, Turkiye
[3] Istanbul Medeniyet Univ, Dept Math, Istanbul, Turkiye
[4] Azerbaijan State Pedag Univ, Baku, Azerbaijan
来源
ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL | 2023年 / 16卷 / 02期
基金
俄罗斯基础研究基金会;
关键词
Fractional multilinear integral; rough kernel; Lipshitz function; variable exponent vanishing generalized Morrey space; EXPONENT MORREY; SINGULAR-OPERATORS; RIESZ-POTENTIALS; BOUNDEDNESS; COMMUTATORS; LEBESGUE;
D O I
10.32513/asetmj/193220082317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the Lipschitz boundedness for a class of fractional multilinear integral operators IA,m & OHM;,& alpha; with rough kernels & OHM; & ISIN; Ls(Sn-1), s > n/(n - & alpha;) on the variable exponent local general-ized Morrey spaces M{x0} p(& BULL;),& phi;, variable exponent generalized Morrey spaces Mp(& BULL;),& phi; and variable exponent vanishing generalized Morrey spaces VMp(& BULL;),& phi;, where the functions A belong to ho-mogeneous Lipschitz space ?& beta;, 0 < & beta; < 1.
引用
收藏
页码:63 / 77
页数:15
相关论文
共 42 条
[1]  
Akbulut A., 2016, T NATL ACAD SCI AZER, V36, P10
[2]   Boundedness of rough fractional multilinear integral operators on generalized Morrey spaces [J].
Akbulut, Ali ;
Hamzayev, Vugar H ;
Safarov, Zaman V .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[3]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[4]  
[Anonymous], 1977, Pure and Applied Mathematics
[5]   Embedding Theorems between Variable-Exponent Morrey Spaces [J].
Bandaliyev, R. A. ;
Guliyev, V. S. .
MATHEMATICAL NOTES, 2019, 106 (3-4) :488-500
[6]   A BMO ESTIMATE FOR MULTILINEAR SINGULAR-INTEGRALS [J].
COHEN, J ;
GOSSELIN, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1986, 30 (03) :445-464
[7]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[8]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[9]  
DEVORE RA, 1984, MEM AM MATH SOC, V47, P1
[10]  
Diening L, 2003, J REINE ANGEW MATH, V563, P197