Simultaneous identification of time-delay parameter and fractional order in nonlinear fractional delay differential equation

被引:2
|
作者
Wang, Jungang [1 ]
Si, Qingyang [1 ]
Chen, Jia [1 ]
Zhang, You [2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[2] Aero Engine Corp China, Sichuan Gas Turbine Estab, Mianyang 510700, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Identification problem; Modified optimal perturbation; method; Fractional delay differential equation; Time-delay parameter; Fractional order; STABILITY;
D O I
10.1016/j.aml.2023.108740
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a novel algorithm for simultaneously identifying the time-delay parameter and fractional order in nonlinear fractional delay differential equations. Building upon the optimal perturbation method, we introduce an important perturbation function and develop a modified optimal perturbation method to identify the unknown parameters. Our proposed algorithm overcomes the issue of the optimal perturbation method being prone to local optimal values and requires relatively fewer iterations. Numerical examples are presented to confirm the validity of our algorithm. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Fractional Order Delay Differential Equation Constrained by Nonlocal and Weighted Delay Integral Equations
    El-Sayed, A. M. A.
    El-Sayed, W. G.
    Msaik, Kheria M.
    Ebead, Hanaa R.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [32] Parameter identification and optimisation for a class of fractional-order chaotic system with time delay
    Li, Xiao
    Liu, Fu-cai
    Liu, Xue
    Guo, Yu
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2018, 29 (02) : 153 - 162
  • [33] Parameter identification of fractional-order time delay system based on Legendre wavelet
    Wang, Zishuo
    Wang, Chunyang
    Ding, Lianghua
    Wang, Zeng
    Liang, Shuning
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 163
  • [34] Parameter identification of fractional-order time delay system based on Legendre wavelet
    Wang, Zishuo
    Wang, Chunyang
    Ding, Lianghua
    Wang, Zeng
    Liang, Shuning
    Mechanical Systems and Signal Processing, 2022, 163
  • [35] Stabilization of Fractional Order PID Controllers for Time-Delay Fractional Order Plants by Using Genetic Algorithm
    Tufenkci, Sevilay
    Senol, Bilal
    Alagoz, Baris Baykant
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,
  • [36] Analysis for fractional integro-differential equation with time delay
    Soliman, A. A.
    Raslan, K. R.
    Abdallah, A. M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 989 - 1007
  • [37] A fractional-order generalized Taylor wavelet method for nonlinear fractional delay and nonlinear fractional pantograph differential equations
    Yuttanan, Boonrod
    Razzaghi, Mohsen
    Vo, Thieu N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) : 4156 - 4175
  • [38] Chaotic dynamics of the fractional order nonlinear system with time delay
    Vedat Çelik
    Yakup Demir
    Signal, Image and Video Processing, 2014, 8 : 65 - 70
  • [39] Chaotic dynamics of the fractional order nonlinear system with time delay
    Celik, Vedat
    Demir, Yakup
    SIGNAL IMAGE AND VIDEO PROCESSING, 2014, 8 (01) : 65 - 70
  • [40] Fractional-order time-delay feedback control for nonlinear dynamics in giant magnetostrictive actuators
    Hongbo Yan
    Qingzhen Ma
    Jianxin Wang
    Haitao Huang
    Nonlinear Dynamics, 2024, 112 : 3055 - 3079