Simultaneous identification of time-delay parameter and fractional order in nonlinear fractional delay differential equation

被引:2
|
作者
Wang, Jungang [1 ]
Si, Qingyang [1 ]
Chen, Jia [1 ]
Zhang, You [2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[2] Aero Engine Corp China, Sichuan Gas Turbine Estab, Mianyang 510700, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Identification problem; Modified optimal perturbation; method; Fractional delay differential equation; Time-delay parameter; Fractional order; STABILITY;
D O I
10.1016/j.aml.2023.108740
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a novel algorithm for simultaneously identifying the time-delay parameter and fractional order in nonlinear fractional delay differential equations. Building upon the optimal perturbation method, we introduce an important perturbation function and develop a modified optimal perturbation method to identify the unknown parameters. Our proposed algorithm overcomes the issue of the optimal perturbation method being prone to local optimal values and requires relatively fewer iterations. Numerical examples are presented to confirm the validity of our algorithm. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Parameter identification in time-delay differential equation
    Solodushkin, S. I.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2006, (02): : 211 - 214
  • [2] State and disturbance simultaneous estimation for a class of nonlinear time-delay fractional-order systems
    Huong, Dinh Cong
    Thi Hai Yen, Dao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2022, 236 (04) : 846 - 856
  • [3] Stability Analysis of Fractional-order Differential Equation with Time Delay and Applications in Fractional Logistic Equation
    Zhang, Hongwei
    Jin, Niu
    Hu, Qingying
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 879 - 881
  • [4] On Fractional Integro-Differential Equation with Nonlinear Time Varying Delay
    Soliman, A. A.
    Raslan, K. R.
    Abdallah, A. M.
    SOUND AND VIBRATION, 2022, 56 (02): : 147 - 163
  • [5] Chaos in the fractional order nonlinear Bloch equation with delay
    Baleanu, Dumitru
    Magin, Richard L.
    Bhalekar, Sachin
    Daftardar-Gejji, Varsha
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 25 (1-3) : 41 - 49
  • [6] Time-Delay and Fractional Derivatives
    J.A. Tenreiro Machado
    Advances in Difference Equations, 2011
  • [7] Time-Delay and Fractional Derivatives
    Tenreiro Machado, J. A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [8] Stability analysis of fractional differential time-delay equations
    Thanh, Nguyen T.
    Hieu Trinh
    Phat, Vu N.
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (07): : 1006 - 1015
  • [9] A fractional-order epidemic model with time-delay and nonlinear incidence rate
    Rihan, F. A.
    Al-Mdallal, Q. M.
    AlSakaji, H. J.
    Hashish, A.
    CHAOS SOLITONS & FRACTALS, 2019, 126 (97-105) : 97 - 105
  • [10] OPTIMAL CONTROL OF NONLINEAR TIME-DELAY FRACTIONAL DIFFERENTIAL EQUATIONS WITH DICKSON POLYNOMIALS
    Chen, Shu-Bo
    Soradi-Zeid, Samaneh
    Alipour, Maryam
    Chu, Yu-Ming
    Gomez-Aguilar, J. F.
    Jahanshahi, Hadi
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)