Overdamped Phonon Diffusion and Nontrivial Electronic Structure Leading to a High Thermoelectric Figure of Merit in KCu5Se3

被引:33
作者
Li, Fan [1 ,2 ]
Liu, Xin [1 ]
Ma, Ni [2 ]
Yang, Yi-Chang [1 ]
Yin, Jian-Ping [1 ]
Chen, Ling [1 ,2 ]
Wu, Li-Ming [1 ,2 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Ctr Adv Mat Res, Zhuhai 519087, Peoples R China
基金
中国国家自然科学基金;
关键词
ULTRALOW THERMAL-CONDUCTIVITY; PERFORMANCE; TRANSPORT; BANDS; ENERGY;
D O I
10.1021/jacs.3c04871
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermoelectric copper selenides are highly attractiveowing tonot only their constituent nontoxic, abundant elements but also theirultralow liquid-like lattice thermal conductivity (& kappa;(lat)). For the first time, the promising thermoelectric properties ofthe new KCu5Se3 are reported herein, showinga high power factor (PF = 9.0 & mu;Wcm(-1) K-2) and an intrinsically ultralow & kappa;(lat) = 0.48 Wm(-1) K-1. The doped K1-x Ba x Cu5Se3 (x = 0.03) realizes a figure-of-meritZT = 1.3 at 950 K. The crystallographic structure of KCu5Se3 allows complex lattice dynamics that obey a rare dual-phonontransport model well describing a high scattering rate and an extremelyshort phonon lifetime that are attributed to interband phonon tunneling,confinement of the transverse acoustic branches, and temperature-dependentanharmonic renormalization, all of which generate an unprecedentlyhigh contribution of the diffusive phonons (70% at 300 K). The overallweak chemical bonding feature of KCu5Se3 givesK(+) cations a quiescence behavior that further blocks theheat flux transfer. In addition, the valence band edge energy dispersionof KCu5Se3 is quasilinear that allows a largeSeebeck coefficient even at high hole concentrations. These in-depthunderstandings of the ultralow lattice thermal conductivity providenew insights into the property-oriented design and synthesis of advancedcomplex chalcogenide materials.
引用
收藏
页码:14981 / 14993
页数:13
相关论文
共 71 条
[1]   LATTICE THERMAL CONDUCTIVITY OF DISORDERED SEMICONDUCTOR ALLOYS AT HIGH TEMPERATURES [J].
ABELES, B .
PHYSICAL REVIEW, 1963, 131 (05) :1906-&
[2]   Intrinsically Ultralow Thermal Conductivity in Ruddlesden-Popper 2D Perovskite Cs2PbI2Cl2: Localized Anharmonic Vibrations and Dynamic Octahedral Distortions [J].
Acharyya, Paribesh ;
Ghosh, Tanmoy ;
Pal, Koushik ;
Kundu, Kaushik ;
Rana, Kewal Singh ;
Pandey, Juhi ;
Soni, Ajay ;
Waghmare, Umesh, V ;
Biswas, Kanishka .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (36) :15595-15603
[3]   Minimum thermal conductivity in the context of diffuson-mediated thermal transport [J].
Agne, Matthias T. ;
Hanus, Riley ;
Snyder, G. Jeffrey .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (03) :609-616
[4]   THERMAL-CONDUCTIVITY OF DISORDERED HARMONIC SOLIDS [J].
ALLEN, PB ;
FELDMAN, JL .
PHYSICAL REVIEW B, 1993, 48 (17) :12581-12588
[5]   Crystal structures, atomic vibration, and disorder of the type-I thermoelectric clathrates Ba8Ga16Si30, Ba8Ga16Ge30, Ba8In16Ge30, and Sr8Ga16Ge30 -: art. no. 144107 [J].
Bentien, A ;
Nishibori, E ;
Paschen, S ;
Iversen, BB .
PHYSICAL REVIEW B, 2005, 71 (14)
[6]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[7]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[8]   Ultralow Thermal Conductivity and Thermoelectric Properties of Rb2Bi8Se13 [J].
Cai, Songting ;
Hao, Shiqiang ;
Luo, Yubo ;
Su, Xianli ;
Luo, Zhong-Zhen ;
Hu, Xiaobing ;
Wolverton, Christopher ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
CHEMISTRY OF MATERIALS, 2020, 32 (08) :3561-3569
[9]   Ultralow Thermal Conductivity and Enhanced Figure of Merit for CuSbSe2 via Cd-Doping [J].
Chen, Tao ;
Ming, Hongwei ;
Zhang, Baoli ;
Zhu, Chen ;
Zhang, Jian ;
Zhou, Qi ;
Li, Di ;
Xin, Hongxing ;
Qin, Xiaoying .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (02) :1637-1643
[10]   Glasslike heat conduction in high-mobility crystalline semiconductors [J].
Cohn, JL ;
Nolas, GS ;
Fessatidis, V ;
Metcalf, TH ;
Slack, GA .
PHYSICAL REVIEW LETTERS, 1999, 82 (04) :779-782