A Nonvolatile Compute-in-Memory Macro Using Voltage-Controlled MRAM and In Situ Magnetic-to-Digital Converter

被引:5
作者
Jacob, Vinod Kurian [1 ]
Yang, Jiyue [1 ]
He, Haoran [1 ]
Gupta, Puneet [1 ]
Wang, Kang L. [1 ]
Pamarti, Sudhakar [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
来源
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS | 2023年 / 9卷 / 01期
关键词
Compute-in-memory (CIM); deep learning accelerator; nonvolatile memory; voltage-control MRAM; SRAM MACRO;
D O I
10.1109/JXCDC.2023.3258431
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compute-in-memory (CIM) accelerator has become a popular solution to achieve high energy efficiency for deep learning applications in edge devices. Recent works have demonstrated CIM macros using nonvolatile memories [spin transfer torque (STT)-MRAM and resistive random access memory (RRAM)] to take advantages of their nonvolatility and high density. However, effective computation dynamic range is far lower than their static random access memory (SRAM)-CIM counterparts due to low device ON/OFF ratio. In this work, we combine a nonvolatile memory based on a voltage-controlled magnetic tunneling junction (VC-MTJ) device, called voltage-controlled MRAM or VC-MRAM, and accurate switched-capacitor-based CIM using a novel in situ magnetic-to-digital converter (MDC). The VC-MTJ device has demonstrated 10x lower write energy and switching time compared to STT-MRAM device and has comparable density, read energy, and read latency. The in situ MDCs embedded inside each VC-MRAM row convert magnetically stored weight information to CMOS logic levels and enable switched-capacitor-based multiply-accumulate (MAC) operation with accuracy comparable to the state-of-the-art SRAM-CIM. This article describes the schematic and layout level design of a VC-MRAM CIM macro in 28 nm. This is the first nonvolatile CIM design to enable analog MAC computation with 256 parallel rows turned on simultaneously without degradation in dynamic range (<1 LSB). Detailed circuit simulations including experimentally validated VC-MTJ compact models show 1.5x higher energy efficiency and 2x higher density compared to the state-of-the-art SRAM-based CIM.
引用
收藏
页码:56 / 64
页数:9
相关论文
共 27 条
  • [1] A 22nm 4Mb 8b-Precision ReRAM Computing-in-Memory Macro with 11.91 to 195.7TOPS/W for Tiny AI Edge Devices
    Xue, Cheng-Xin
    Hung, Je-Min
    Kao, Hui-Yao
    Huang, Yen-Hsiang
    Huang, Sheng-Po
    Chang, Fu-Chun
    Chen, Peng
    Liu, Ta-Wei
    Jhang, Chuan-Jia
    Su, Chin-, I
    Khwa, Win-San
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chih, Yu-Der
    Chang, Tsung-Yung Jonathan
    Chang, Meng-Fan
    [J]. 2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 : 246 - +
  • [2] Chiang H. L., 2021, 2021 S VLSI TECHNOLO, P1
  • [3] Chiu Yen-Cheng, 2022, 2022 IEEE International Solid- State Circuits Conference (ISSCC), P178, DOI 10.1109/ISSCC42614.2022.9731621
  • [4] Review of voltage-controlled magnetic anisotropy and magnetic insulator
    Dai, Bingqian
    Jackson, Malcolm
    Cheng, Yang
    He, Haoran
    Shu, Qingyuan
    Huang, Hanshen
    Tai, Lixuan
    Wang, Kang
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 563
  • [5] Deaville Peter, 2022, 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), P268, DOI 10.1109/VLSITechnologyandCir46769.2022.9830153
  • [6] Dong Q, 2020, ISSCC DIG TECH PAP I, P242, DOI [10.1109/ISSCC19947.2020.9062985, 10.1109/isscc19947.2020.9062985]
  • [7] A 1-Mb 28-nm 1T1MTJ STT-MRAM With Single-Cap Offset-Cancelled Sense Amplifier and In Situ Self-Write-Termination
    Dong, Qing
    Wang, Zhehong
    Lim, Jongyup
    Zhang, Yiqun
    Sinangil, Mahmut E.
    Shih, Yi-Chun
    Chih, Yu-Der
    Chang, Jonathan
    Blaauw, David
    Sylvester, Dennis
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) : 231 - 239
  • [8] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448
  • [9] Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product
    Grezes, C.
    Ebrahimi, F.
    Alzate, J. G.
    Cai, X.
    Katine, J. A.
    Langer, J.
    Ocker, B.
    Amiri, P. Khalili
    Wang, K. L.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (01)
  • [10] Write Error Rate and Read Disturbance in Electric-Field-Controlled Magnetic Random-Access Memory
    Grezes, Cecile
    Lee, Hochul
    Lee, Albert
    Wang, Shaodi
    Ebrahimi, Farbod
    Li, Xiang
    Wong, Kin
    Katine, Jordan A.
    Ocker, Berthold
    Langer, Juergen
    Gupta, Puneet
    Amiri, Pedram Khalili
    Wang, Kang L.
    [J]. IEEE MAGNETICS LETTERS, 2017, 8