A Nonvolatile Compute-in-Memory Macro Using Voltage-Controlled MRAM and In Situ Magnetic-to-Digital Converter

被引:6
作者
Jacob, Vinod Kurian [1 ]
Yang, Jiyue [1 ]
He, Haoran [1 ]
Gupta, Puneet [1 ]
Wang, Kang L. [1 ]
Pamarti, Sudhakar [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
来源
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS | 2023年 / 9卷 / 01期
关键词
Compute-in-memory (CIM); deep learning accelerator; nonvolatile memory; voltage-control MRAM; SRAM MACRO;
D O I
10.1109/JXCDC.2023.3258431
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compute-in-memory (CIM) accelerator has become a popular solution to achieve high energy efficiency for deep learning applications in edge devices. Recent works have demonstrated CIM macros using nonvolatile memories [spin transfer torque (STT)-MRAM and resistive random access memory (RRAM)] to take advantages of their nonvolatility and high density. However, effective computation dynamic range is far lower than their static random access memory (SRAM)-CIM counterparts due to low device ON/OFF ratio. In this work, we combine a nonvolatile memory based on a voltage-controlled magnetic tunneling junction (VC-MTJ) device, called voltage-controlled MRAM or VC-MRAM, and accurate switched-capacitor-based CIM using a novel in situ magnetic-to-digital converter (MDC). The VC-MTJ device has demonstrated 10x lower write energy and switching time compared to STT-MRAM device and has comparable density, read energy, and read latency. The in situ MDCs embedded inside each VC-MRAM row convert magnetically stored weight information to CMOS logic levels and enable switched-capacitor-based multiply-accumulate (MAC) operation with accuracy comparable to the state-of-the-art SRAM-CIM. This article describes the schematic and layout level design of a VC-MRAM CIM macro in 28 nm. This is the first nonvolatile CIM design to enable analog MAC computation with 256 parallel rows turned on simultaneously without degradation in dynamic range (<1 LSB). Detailed circuit simulations including experimentally validated VC-MTJ compact models show 1.5x higher energy efficiency and 2x higher density compared to the state-of-the-art SRAM-based CIM.
引用
收藏
页码:56 / 64
页数:9
相关论文
共 27 条
[1]   A 22nm 4Mb 8b-Precision ReRAM Computing-in-Memory Macro with 11.91 to 195.7TOPS/W for Tiny AI Edge Devices [J].
Xue, Cheng-Xin ;
Hung, Je-Min ;
Kao, Hui-Yao ;
Huang, Yen-Hsiang ;
Huang, Sheng-Po ;
Chang, Fu-Chun ;
Chen, Peng ;
Liu, Ta-Wei ;
Jhang, Chuan-Jia ;
Su, Chin-, I ;
Khwa, Win-San ;
Lo, Chung-Chuan ;
Liu, Ren-Shuo ;
Hsieh, Chih-Cheng ;
Tang, Kea-Tiong ;
Chih, Yu-Der ;
Chang, Tsung-Yung Jonathan ;
Chang, Meng-Fan .
2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 :246-+
[2]  
Chiang H., 2021, P S VLSI TECHN, P1
[3]  
Chiu Yen-Cheng, 2022, 2022 IEEE International Solid- State Circuits Conference (ISSCC), P178, DOI 10.1109/ISSCC42614.2022.9731621
[4]   Review of voltage-controlled magnetic anisotropy and magnetic insulator [J].
Dai, Bingqian ;
Jackson, Malcolm ;
Cheng, Yang ;
He, Haoran ;
Shu, Qingyuan ;
Huang, Hanshen ;
Tai, Lixuan ;
Wang, Kang .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 563
[5]  
Deaville Peter, 2022, 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), P268, DOI 10.1109/VLSITechnologyandCir46769.2022.9830153
[6]  
Dong Q, 2020, ISSCC DIG TECH PAP I, P242, DOI [10.1109/ISSCC19947.2020.9062985, 10.1109/isscc19947.2020.9062985]
[7]   A 1-Mb 28-nm 1T1MTJ STT-MRAM With Single-Cap Offset-Cancelled Sense Amplifier and In Situ Self-Write-Termination [J].
Dong, Qing ;
Wang, Zhehong ;
Lim, Jongyup ;
Zhang, Yiqun ;
Sinangil, Mahmut E. ;
Shih, Yi-Chun ;
Chih, Yu-Der ;
Chang, Jonathan ;
Blaauw, David ;
Sylvester, Dennis .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) :231-239
[8]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[9]   Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product [J].
Grezes, C. ;
Ebrahimi, F. ;
Alzate, J. G. ;
Cai, X. ;
Katine, J. A. ;
Langer, J. ;
Ocker, B. ;
Amiri, P. Khalili ;
Wang, K. L. .
APPLIED PHYSICS LETTERS, 2016, 108 (01)
[10]   Write Error Rate and Read Disturbance in Electric-Field-Controlled Magnetic Random-Access Memory [J].
Grezes, Cecile ;
Lee, Hochul ;
Lee, Albert ;
Wang, Shaodi ;
Ebrahimi, Farbod ;
Li, Xiang ;
Wong, Kin ;
Katine, Jordan A. ;
Ocker, Berthold ;
Langer, Juergen ;
Gupta, Puneet ;
Amiri, Pedram Khalili ;
Wang, Kang L. .
IEEE MAGNETICS LETTERS, 2017, 8