Branched microtubule nucleation and dynein transport organize RanGTP asters in Xenopus laevis egg extract

被引:3
作者
Scrofani, Jacopo [1 ]
Ruhnow, Felix [1 ]
Chew, Wei -Xiang [1 ]
Normanno, Davide [1 ,5 ]
Nedelec, Francois [2 ]
Surrey, Thomas [1 ,3 ,4 ]
Vernos, Isabelle [1 ,3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Quantitat Cell Biol Program, Barcelona 08003, Spain
[2] Univ Cambridge, Sainsbury Lab, Bateman St, Cambridge CB2 1LR, England
[3] Univ Pompeu Fabra UPF, Barcelona 08002, Spain
[4] Inst Catalana Invest & Estudios Avanzados ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[5] Univ Montpellier, Inst Human Genet IGH, CNRS, F-34396 Montpellier, France
基金
欧洲研究理事会;
关键词
CYTOPLASMIC DYNEIN; SELF-ORGANIZATION; MITOTIC SPINDLE; GAMMA-TUBULIN; IN-VITRO; DYNACTIN; DYNAMICS; AUGMIN; COMPLEX; PROTEIN;
D O I
10.1091/mbc.E23-10-0407
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Chromosome segregation relies on the correct assembly of a bipolar spindle. Spindle pole self-organization requires dynein-dependent microtubule (MT) transport along other MTs. However, during M-phase RanGTP triggers MT nucleation and branching generating polarized arrays with nonastral organization in which MT minus ends are linked to the sides of other MTs. This raises the question of how branched-MT nucleation and dynein-mediated transport cooperate to organize the spindle poles. Here, we used RanGTP-dependent MT aster formation in Xenopus laevis (X. laevis) egg extract to study the interplay between these two seemingly conflicting organizing principles. Using temporally controlled perturbations of MT nucleation and dynein activity, we found that branched MTs are not static but instead dynamically redistribute over time as poles self-organize. Our experimental data together with computer simulations suggest a model where dynein together with dynactin and NuMA directly pulls and move branched MT minus ends toward other MT minus ends.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Augmin-dependent microtubule self-organization drives kinetochore fiber maturation in mammals [J].
Almeida, Ana C. ;
Soares-de-Oliveira, Joana ;
Drpic, Danica ;
Cheeseman, Liam P. ;
Damas, Joana ;
Lewin, Harris A. ;
Larkin, Denis M. ;
Aguiar, Paulo ;
Pereira, Antonio J. ;
Maiato, Helder .
CELL REPORTS, 2022, 39 (01)
[2]   The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition [J].
Belyy, Vladislav ;
Schlager, Max A. ;
Foster, Helen ;
Reimer, Armando E. ;
Carter, Andrew P. ;
Yildiz, Ahmet .
NATURE CELL BIOLOGY, 2016, 18 (09) :1018-1024
[3]   Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts [J].
Brunet, S ;
Sardon, T ;
Zimmerman, T ;
Wittmann, T ;
Pepperkok, R ;
Karsenti, E ;
Vernos, I .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (12) :5318-5328
[4]   Effects of microtubule length and crowding on active microtubule network organization [J].
Chew, Wei-Xiang ;
Henkin, Gil ;
Nedelec, Francois ;
Surrey, Thomas .
ISCIENCE, 2023, 26 (02)
[5]   Self-Organization of Anastral Spindles by Synergy of Dynamic Instability, Autocatalytic Microtubule Production, and a Spatial Signaling Gradient [J].
Clausen, Thomas ;
Ribbeck, Katharina .
PLOS ONE, 2007, 2 (02)
[6]   Augmin accumulation on long-lived microtubules drives amplification and kinetochore-directed growth [J].
David, Ana F. ;
Roudot, Philippe ;
Legant, Wesley R. ;
Betzig, Eric ;
Danuser, Gaudenz ;
Gerlich, Daniel W. .
JOURNAL OF CELL BIOLOGY, 2019, 218 (07) :2150-2168
[7]   Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles [J].
Decker, Franziska ;
Oriola, David ;
Dalton, Benjamin ;
Brugues, Jan .
ELIFE, 2018, 7
[8]  
Desai A, 1999, METHOD CELL BIOL, V61, P385
[9]   Lis1 activates dynein motility by modulating its pairing with dynactin [J].
Elshenawy, Mohamed M. ;
Kusakci, Emre ;
Volz, Sara ;
Baumbach, Janina ;
Bullock, Simon L. ;
Yildiz, Ahmet .
NATURE CELL BIOLOGY, 2020, 22 (05) :570-+
[10]   Xenopus extract approaches to studying microtubule organization and signaling in cytokinesis [J].
Field, C. M. ;
Pelletier, J. F. ;
Mitchison, T. J. .
CYTOKINESIS, 2017, 137 :395-435