Estimation of Spectral Spacing in Gridless NyquistWDM systems using Fuzzy Clustering and Deep Learning

被引:0
作者
Montoya Ocampo, C. A. [1 ]
Granada Torres, J. J. [1 ]
机构
[1] Univ Antioquia, Fac Ingn, GITA Lab, Calle 67 53-108, Medellin, Colombia
来源
2023 IEEE PHOTONICS CONFERENCE, IPC | 2023年
关键词
Deep Learning; Interchannel Interference; Nyquist-WDM;
D O I
10.1109/IPC57732.2023.10360663
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We model a deep neural network to estimate the level of spectral spacing in optical gridless networks. This method is experimentally validated in a 3x32-Gbaud 16-QAM Nyquist-WDM system in transmission up to 270km. Errors lower than 1GHz and accuracies up to 92% were obtained.
引用
收藏
页数:2
相关论文
共 6 条
  • [1] Inter-Channel Nonlinear Interference Noise in WDM Systems: Modeling and Mitigation
    Dar, Ronen
    Feder, Meir
    Mecozzi, Antonio
    Shtaif, Mark
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (05) : 1044 - 1053
  • [2] Spectral overlapping estimation based on machine learning for gridless Nyquist-wavelength division multiplexing systems
    Escobar Perez, Alejandro
    Guerrero Gonzalez, Neil
    Granada Torres, Jhon James
    [J]. OPTICAL ENGINEERING, 2020, 59 (07)
  • [3] Experimental Demonstration of Linear Inter-Channel Interference Estimation Based on Neural Networks
    Hraghi, A.
    Minelli, L.
    Nespola, A.
    Piciaccia, S.
    Bosco, G.
    [J]. IEEE PHOTONICS JOURNAL, 2023, 15 (02):
  • [4] Khodashenas P. S, 2015, 17 INT C TRANSP OPT, P1
  • [5] Puentes N. P, 2022, FRONTIERS OPTICS LAS
  • [6] Tomkos I., 2012, 14 INT C TRANSP OPT, P1