Second-order time integrators with the Fourier spectral method in application to multidimensional space-fractional FitzHugh-Nagumo model

被引:1
作者
Bhatt, Harish [1 ]
机构
[1] Utah Valley Univ, Dept Math, Orem, UT 84058 USA
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 12期
关键词
fourier spectral method; second-order time integrators; space-fractional; reaction-diffusion systems; excitable systems; FitzHugh-Nagumo model; DIFFUSION; EQUATIONS; SCHEMES;
D O I
10.3934/era.2023369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigated the propagation and interaction behavior of the fractional-in-space multidimensional FitzHugh-Nagumo model using second-order time integrators in combination with the Fourier spectral method. The study focused on analyzing the accuracy, efficiency and stability of these time integrators by comparing numerical results. The experimental findings highlight the ease of implementation and suitability of the methods for long-time simulations. Furthermore, the methods capability to capture the influence of the fractional operator on the equations dynamics was examined.
引用
收藏
页码:7284 / 7306
页数:23
相关论文
共 26 条
[1]   Fast high-order method for multi-dimensional space-fractional reaction-diffusion equations with general boundary conditions [J].
Almushaira, M. ;
Bhatt, H. ;
Al-rassas, A. M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 182 :235-258
[2]  
[Anonymous], 1992, COMPUTATIONAL FRAMEW
[3]   A new class of time discretization schemes for the solution of nonlinear PDEs [J].
Beylkin, G ;
Keiser, JM ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :362-387
[4]   Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model [J].
Bu, Weiping ;
Tang, Yifa ;
Wu, Yingchuan ;
Yang, Jiye .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :355-364
[5]   Complex-order fractional diffusion in reaction-diffusion systems [J].
Bueno-Orovio, Alfonso ;
Burrage, Kevin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
[6]   Fourier spectral methods for fractional-in-space reaction-diffusion equations [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2014, 54 (04) :937-954
[7]   Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative [J].
Che, Han ;
Yu-Lan, Wang ;
Zhi-Yuan, Li .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 202 :149-163
[8]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455
[9]   A COMPARATIVE STUDY ON NONLOCAL DIFFUSION OPERATORS RELATED TO THE FRACTIONAL LAPLACIAN [J].
Duo, Siwei ;
Wang, Hong ;
Zhang, Yanzhi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (01) :231-256
[10]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&