Complete chloroplast genome of Tricyrtis xianjuensis Li, Chen & Ma 2014 (Liliaceae): a species endemic to Zhejiang province, China

被引:0
作者
Huang, Leqin [1 ]
Lu, Zhenyu [1 ]
Wang, Junfeng [2 ]
Bao, Honghua [3 ]
Zhang, Huijuan [1 ]
Jiang, Ming [1 ,4 ]
机构
[1] Taizhou Univ, Coll Life Sci, Taizhou, Peoples R China
[2] East China Med Bot Garden, Sci Res Management Ctr, Lishui, Peoples R China
[3] Taizhou Municipal Ecol & Environm Bur, Taizhou, Peoples R China
[4] Taizhou Univ, Coll Life Sci, Taizhou 318000, Peoples R China
来源
MITOCHONDRIAL DNA PART B-RESOURCES | 2024年 / 9卷 / 01期
关键词
Tricyrtis xianjuensis; rare species; chloroplast genome; phylogenetic analysis; SEQUENCE; PERFORMANCE;
D O I
10.1080/23802359.2023.2301021
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Tricyrtis xianjuensis Li, Chen & Ma 2014 is a rare and endangered species endemic to Zhejiang province, with fewer than 200 individuals in the wild. In our present study, the complete chloroplast genome of T. xianjuensis was assembled by using high-throughput sequencing data, and its genomic features were described and comparative genomic analyses within Liliaceae family were performed. The complete chloroplast genome of T. xianjuensis was 155,748 bp in length, exhibiting a GC content of 37.3%. This genome structure contained two inverted repeats (IRs), as well as a small single-copy (SSC) and a large single-copy (LSC) region. The IR region measured 26,371 bp, while the SSC and LSC regions were 17,729 bp and 85,277 bp in length, respectively. A total of 137 genes were identified, including 85 protein-coding genes, 38 tRNA genes, eight rRNA genes, and six pseudogenes. Phylogenic analysis revealed T. xianjuensis shared a clade with T. formosana Baker 1879 and T. macropoda Miq. 1867, with a support rate of 100%. The assembly and analysis of T. xianjuensis chloroplast genome provided an insight into further studies on the conservation genetics of this endangered species.
引用
收藏
页码:60 / 65
页数:6
相关论文
共 29 条
[1]   A structural phylogenetic map for chloroplast photosynthesis [J].
Allen, John F. ;
de Paula, Wilson B. M. ;
Puthiyaveetil, Sujith ;
Nield, Jon .
TRENDS IN PLANT SCIENCE, 2011, 16 (12) :645-655
[2]  
Chen YY, 2018, INT J MOL SCI, V19, DOI [10.3390/ijms19030654, 10.3390/ijms19092592]
[3]   Characterization of the complete chloroplast genome of Zephyranthes phycelloides (Amaryllidaceae, tribe Hippeastreae) from Atacama region of Chile [J].
Contreras-Diaz, Roberto ;
Arias-Aburto, Mariana ;
van den Brink, Liesbeth .
SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2022, 29 (01) :650-659
[4]   Chloroplast genomes: diversity, evolution, and applications in genetic engineering [J].
Daniell, Henry ;
Lin, Choun-Sea ;
Yu, Ming ;
Chang, Wan-Jung .
GENOME BIOLOGY, 2016, 17
[5]   NOVOPlasty: de novo assembly of organelle genomes from whole genome data [J].
Dierckxsens, Nicolas ;
Mardulyn, Patrick ;
Smits, Guillaume .
NUCLEIC ACIDS RESEARCH, 2017, 45 (04)
[6]   Implications of plastome evolution in the true lilies (monocot order Liliales) [J].
Do, Hoang Dang Khoa ;
Kim, Changkyun ;
Chase, Mark W. ;
Kim, Joo-Hwan .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2020, 148
[7]  
Doyle J.J., 1987, PHYTOCHEM B, V19, P11, DOI DOI 10.1016/0031-9422(80)85004-7
[8]   Smilax weniae, a New Species of Smilacaceae from Limestone Areas Bordering Guizhou and Guangxi, China [J].
Feng, Jie-Ying ;
Jin, Xin-Jie ;
Zhang, Sheng-Lu ;
Yang, Jia-Wen ;
Fei, Shi-Peng ;
Huang, Yu-Song ;
Liu, Yan ;
Qi, Zhe-Chen ;
Li, Pan .
PLANTS-BASEL, 2022, 11 (08)
[9]   New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0 [J].
Guindon, Stephane ;
Dufayard, Jean-Francois ;
Lefort, Vincent ;
Anisimova, Maria ;
Hordijk, Wim ;
Gascuel, Olivier .
SYSTEMATIC BIOLOGY, 2010, 59 (03) :307-321
[10]   The complete chloroplast genome and phylogenetic analysis of Smilax moranensis (Liliales: Smilacaceae) [J].
Ji, Baoyu ;
Pei, Lixin ;
Cui, Ning .
MITOCHONDRIAL DNA PART B-RESOURCES, 2022, 7 (07) :1206-1207