Organ-on-a-chip meets artificial intelligence in drug evaluation

被引:66
作者
Deng, Shiwen [1 ]
Li, Caifeng [1 ,4 ,5 ]
Cao, Junxian [1 ]
Cui, Zhao [1 ,2 ]
Du, Jiang [3 ]
Fu, Zheng [4 ,5 ]
Yang, Hongjun [1 ,4 ,5 ]
Chen, Peng [1 ,3 ,4 ,5 ]
机构
[1] China Acad Chinese Med Sci, Beijing Key Lab Tradit Chinese Med Basic Res Prev, Expt Res Ctr, Beijing 100700, Peoples R China
[2] China Acad Chinese Med Sci, Inst Chinese Mat Med, Beijing 100700, Peoples R China
[3] Yunnan Biovalley Pharmaceut Co Ltd, Kunming 650503, Yunnan, Peoples R China
[4] China Acad Chinese Med Sci, Expt Res Ctr, Robot Intelligent Lab Tradit Chinese Med, Beijing 100700, Peoples R China
[5] MEGAROBO, Beijing 100700, Peoples R China
基金
中国国家自然科学基金;
关键词
Organ-on-a-chip; Microfluidics; Drug evaluation; Artificial intelligence; In vitro model; CELL-CULTURE; MICROPHYSIOLOGICAL SYSTEMS; MICROFLUIDIC PLATFORM; MASS-SPECTROMETRY; 1ST STEP; LIVER; MODEL; DISCOVERY; GUT; TECHNOLOGY;
D O I
10.7150/thno.87266
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Drug evaluation has always been an important area of research in the pharmaceutical industry. However, animal welfare protection and other shortcomings of traditional drug development models pose obstacles and challenges to drug evaluation. Organ-on-a-chip (OoC) technology, which simulates human organs on a chip of the physiological environment and functionality, and with high fidelity reproduction organ-level of physiology or pathophysiology, exhibits great promise for innovating the drug development pipeline. Meanwhile, the advancement in artificial intelligence (AI) provides more improvements for the design and data processing of OoCs. Here, we review the current progress that has been made to generate OoC platforms, and how human single and multi-OoCs have been used in applications, including drug testing, disease modeling, and personalized medicine. Moreover, we discuss issues facing the field, such as large data processing and reproducibility, and point to the integration of OoCs and AI in data analysis and automation, which is of great benefit in future drug evaluation. Finally, we look forward to the opportunities and challenges faced by the coupling of OoCs and AI. In summary, advancements in OoCs development, and future combinations with AI, will eventually break the current state of drug evaluation.
引用
收藏
页码:4526 / 4558
页数:33
相关论文
共 295 条
[1]   Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform [J].
Achberger, Kevin ;
Probst, Christopher ;
Haderspeck, Jasmin ;
Bolz, Sylvia ;
Rogal, Julia ;
Chuchuy, Johanna ;
Nikolova, Marina ;
Cora, Virginia ;
Antkowiak, Lena ;
Haq, Wadood ;
Shen, Nian ;
Schenke-Layland, Katja ;
Ueffing, Marius ;
Liebau, Stefan ;
Loskill, Peter .
ELIFE, 2019, 8
[2]   Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies [J].
Ahadian, Samad ;
Civitarese, Robert ;
Bannerman, Dawn ;
Mohammadi, Mohammad Hossein ;
Lu, Rick ;
Wang, Erika ;
Davenport-Huyer, Locke ;
Lai, Ben ;
Zhang, Boyang ;
Zhao, Yimu ;
Mandla, Serena ;
Korolj, Anastasia ;
Radisic, Milica .
ADVANCED HEALTHCARE MATERIALS, 2018, 7 (02)
[3]   Three-dimensional microengineered vascularised endometrium-on-a-chip [J].
Ahn, Jungho ;
Yoon, Min-Ji ;
Hong, Seon-Hwa ;
Cha, Hwijae ;
Lee, Danbi ;
Koo, Hwa Seon ;
Ko, Ji-Eun ;
Lee, Jungseub ;
Oh, Soojung ;
Li Jeon, Noo ;
Kang, Youn-Jung .
HUMAN REPRODUCTION, 2021, 36 (10) :2720-2731
[4]   Integrated Array Chip for High-Throughput Screening of Species Differences in Metabolism [J].
Ai, Xiaoni ;
Zhao, Lin ;
Lu, Yingyuan ;
Hou, Yu ;
Lv, Tian ;
Jiang, Yong ;
Tu, Pengfei ;
Guo, Xiaoyu .
ANALYTICAL CHEMISTRY, 2020, 92 (17) :11696-11704
[5]   A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells [J].
Aleman, Julio ;
Skardal, Aleksander .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (04) :936-944
[6]   Moving towards reproducible machine learning [J].
不详 .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (10) :629-630
[7]   Gut-on-a-chip: Current progress and future opportunities [J].
Ashammakhi, Nureddin ;
Nasiri, Rohollah ;
de Barros, Natan Roberto ;
Tebon, Peyton ;
Thakor, Jai ;
Goudie, Marcus ;
Shamloo, Amir ;
Martin, Martin G. ;
Khademhosseini, Ali .
BIOMATERIALS, 2020, 255
[8]   Kidney-on-a-chip: untapped opportunities [J].
Ashammakhi, Nureddin ;
Wesseling-Perry, Katherine ;
Hasan, Anwarul ;
Elkhammas, Elmahdi ;
Zhang, Yu Shrike .
KIDNEY INTERNATIONAL, 2018, 94 (06) :1073-1086
[9]   Microfluidic model with air-walls reveals fibroblasts and keratinocytes modulate melanoma cell phenotype, migration, and metabolism [J].
Ayuso, Jose M. ;
Sadangi, Shreyans ;
Lares, Marcos ;
Rehman, Shujah ;
Humayun, Mouhita ;
Denecke, Kathryn M. ;
Skala, Melissa C. ;
Beebe, David J. ;
Setaluri, Vijayasaradhi .
LAB ON A CHIP, 2021, 21 (06) :1139-1149
[10]   High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows† [J].
Azizgolshani, H. ;
Coppeta, J. R. ;
Vedula, E. M. ;
Marr, E. E. ;
Cain, B. P. ;
Luu, R. J. ;
Lech, M. P. ;
Kann, S. H. ;
Mulhern, T. J. ;
Tandon, V. ;
Tan, K. ;
Haroutunian, N. J. ;
Keegan, P. ;
Rogers, M. ;
Gard, A. L. ;
Baldwin, K. B. ;
de Souza, J. C. ;
Hoefler, B. C. ;
Bale, S. S. ;
Kratchman, L. B. ;
Zorn, A. ;
Patterson, A. ;
Kim, E. S. ;
Petrie, T. A. ;
Wiellette, E. L. ;
Williams, C. ;
Isenberg, B. C. ;
Charest, J. L. .
LAB ON A CHIP, 2021, 21 (08) :1454-1474