Polarimetric Radar Quantitative Precipitation Estimation Using Deep Convolutional Neural Networks

被引:6
作者
Li, Wenyuan [1 ,2 ]
Chen, Haonan [2 ]
Han, Lei [1 ]
机构
[1] Ocean Univ China, Fac Informat Sci & Engn, Qingdao 266100, Peoples R China
[2] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Radar; Rain; Radar polarimetry; Meteorology; Reflectivity; Doppler radar; Estimation; Deep learning (DL); dual-polarization; quantitative precipitation estimation (QPE); weather radar; RAINFALL; SYSTEM; BIAS;
D O I
10.1109/TGRS.2023.3280799
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Accurate estimation of surface precipitation with high spatial and temporal resolution is critical for decision-making regarding severe weather and water resources management. A polarimetric weather radar is the main operational instrument used for quantitative precipitation estimation (QPE). However, conventional parametric radar QPE algorithms such as the radar reflectivity ( $Z$ ) and rain rate ( $R$ ) relations cannot fully represent clouds and precipitation dynamics due to their dependence on local raindrop size distributions and the inherent parameterization errors. This article develops four deep learning (DL) models for polarimetric radar QPE (i.e., RQPENet(D1), RQPENet(D2), RQPENet(V), and RQPENet(R)) using different core building blocks. In particular, multidimensional polarimetric radar observations are utilized as input, and surface gauge measurements are used as training labels. The feasibility and performance of these DL models are demonstrated and quantified using U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) observations near Melbourne, FL, USA. The experimental results show that the dense blocks-based models (i.e., RQPENet(D1) and RQPENet(D2)) have better performance than residual blocks, RepVGG blocks-based models (i.e., RQPENet(R) and RQPENet(V)), and five traditional $Z$ - $R$ relations. RQPENet(D1) has the best quantitative performance scores, with a mean absolute error (MAE) of 1.58 mm, root mean squared error (RMSE) of 2.68 mm, normalized standard error (NSE) of 26%, and correlation of 0.92 for hourly rainfall estimates using independent rain gauge data as references. These results suggest that DL performs well in mapping the connection between polarimetric radar observations aloft and surface rainfall.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Tropical Cyclone Intensity Estimation From Geostationary Satellite Imagery Using Deep Convolutional Neural Networks [J].
Wang, Chong ;
Zheng, Gang ;
Li, Xiaofeng ;
Xu, Qing ;
Liu, Bin ;
Zhang, Jun .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[42]   3D Human Knee Flexion Angle Estimation Using Deep Convolutional Neural Networks [J].
Chalangari, Pouria ;
Fevens, Thomas ;
Rivaz, Hassan .
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, :5424-5427
[43]   Multiantenna Radar Signal Interference Mitigation Using Complex-Valued Convolutional Neural Networks [J].
Fuchs, Alexander ;
Rock, Johanna ;
Toth, Mate ;
Meissner, Paul ;
Pernkopf, Franz .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (03) :1997-2008
[44]   Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units [J].
Wang, Shui-Hua ;
Sun, Junding ;
Phillips, Preetha ;
Zhao, Guihu ;
Zhang, Yu-Dong .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 15 (03) :631-642
[45]   A Physically Based Multisensor Quantitative Precipitation Estimation Approach for Gap-Filling Radar Coverage [J].
Martinaitis, Steven M. ;
Osborne, Andrew P. ;
Simpson, Micheal J. ;
Zhang, Jian ;
Howard, Kenneth W. ;
Cocks, Stephen B. ;
Arthur, Ami ;
Langston, Carrie ;
Kaney, Brian T. .
JOURNAL OF HYDROMETEOROLOGY, 2020, 21 (07) :1485-1511
[46]   Radar-Based Contactless Blood Pressure Estimation System Using Signal Decomposition and Deep Neural Network [J].
Wang, Yong ;
Wang, Sibo ;
Fang, Chao ;
Zhou, Mu ;
Yang, Xiaolong ;
Zhang, Qian ;
Pang, Yu .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[47]   Robust DOA Estimation Method for MIMO Radar via Deep Neural Networks [J].
Cong, Jingyu ;
Wang, Xianpeng ;
Huang, Mengxing ;
Wan, Liangtian .
IEEE SENSORS JOURNAL, 2021, 21 (06) :7498-7507
[48]   Quantitative Precipitation Estimation with Operational Polarimetric Radar Measurements in Southern China: A Differential Phase-Based Variational Approach [J].
Huang, Hao ;
Zhao, Kun ;
Zhang, Guifu ;
Lin, Qing ;
Wen, Long ;
Chen, Gang ;
Yang, Zhengwei ;
Wang, Mingjun ;
Hu, Dongming .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2018, 35 (06) :1253-1271
[49]   Tiller estimation method using deep neural networks [J].
Kinose, Rikuya ;
Utsumi, Yuzuko ;
Iwamura, Masakazu ;
Kise, Koichi .
FRONTIERS IN PLANT SCIENCE, 2023, 13
[50]   Quantitative Precipitation Estimation of Extremes in CONUS With Radar Data [J].
Molter, Edward M. ;
Collins, William D. ;
Risser, Mark D. .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (16)