Polarimetric Radar Quantitative Precipitation Estimation Using Deep Convolutional Neural Networks

被引:6
作者
Li, Wenyuan [1 ,2 ]
Chen, Haonan [2 ]
Han, Lei [1 ]
机构
[1] Ocean Univ China, Fac Informat Sci & Engn, Qingdao 266100, Peoples R China
[2] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Radar; Rain; Radar polarimetry; Meteorology; Reflectivity; Doppler radar; Estimation; Deep learning (DL); dual-polarization; quantitative precipitation estimation (QPE); weather radar; RAINFALL; SYSTEM; BIAS;
D O I
10.1109/TGRS.2023.3280799
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Accurate estimation of surface precipitation with high spatial and temporal resolution is critical for decision-making regarding severe weather and water resources management. A polarimetric weather radar is the main operational instrument used for quantitative precipitation estimation (QPE). However, conventional parametric radar QPE algorithms such as the radar reflectivity ( $Z$ ) and rain rate ( $R$ ) relations cannot fully represent clouds and precipitation dynamics due to their dependence on local raindrop size distributions and the inherent parameterization errors. This article develops four deep learning (DL) models for polarimetric radar QPE (i.e., RQPENet(D1), RQPENet(D2), RQPENet(V), and RQPENet(R)) using different core building blocks. In particular, multidimensional polarimetric radar observations are utilized as input, and surface gauge measurements are used as training labels. The feasibility and performance of these DL models are demonstrated and quantified using U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) observations near Melbourne, FL, USA. The experimental results show that the dense blocks-based models (i.e., RQPENet(D1) and RQPENet(D2)) have better performance than residual blocks, RepVGG blocks-based models (i.e., RQPENet(R) and RQPENet(V)), and five traditional $Z$ - $R$ relations. RQPENet(D1) has the best quantitative performance scores, with a mean absolute error (MAE) of 1.58 mm, root mean squared error (RMSE) of 2.68 mm, normalized standard error (NSE) of 26%, and correlation of 0.92 for hourly rainfall estimates using independent rain gauge data as references. These results suggest that DL performs well in mapping the connection between polarimetric radar observations aloft and surface rainfall.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Hand-Gesture Recognition Using Two-Antenna Doppler Radar With Deep Convolutional Neural Networks [J].
Skaria, Sruthy ;
Al-Hourani, Akram ;
Lech, Margaret ;
Evans, Robin J. .
IEEE SENSORS JOURNAL, 2019, 19 (08) :3041-3048
[32]   Traffic Data Imputation Using Deep Convolutional Neural Networks [J].
Benkraouda, Ouafa ;
Thodi, Bilal Thonnam ;
Yeo, Hwasoo ;
Menendez, Monica ;
Jabari, Saif Eddin .
IEEE ACCESS, 2020, 8 (08) :104740-104752
[33]   Neonatal Seizure Detection Using Deep Convolutional Neural Networks [J].
Ansari, Amir H. ;
Cherian, Perumpillichira J. ;
Caicedo, Alexander ;
Naulaers, Gunnar ;
De Vos, Maarten ;
Van Huffel, Sabine .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (04)
[34]   Water stress classification using Convolutional Deep Neural Networks [J].
Aversano, Lerina ;
Bernardi, Mario Luca ;
Cimitile, Marta .
JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (03) :311-328
[35]   Sign Language Translation Using Deep Convolutional Neural Networks [J].
Abiyev, Rahib H. ;
Arslan, Murat ;
Idok, John Bush .
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (02) :631-653
[36]   Assessment of Asteroid Classification Using Deep Convolutional Neural Networks [J].
Bacu, Victor ;
Nandra, Constantin ;
Sabou, Adrian ;
Stefanut, Teodor ;
Gorgan, Dorian .
AEROSPACE, 2023, 10 (09)
[37]   Fingerprint Distortion Rectification using Deep Convolutional Neural Networks [J].
Dabouei, Ali ;
Kazemi, Hadi ;
Iranmanesh, Seyed Mehdi ;
Dawson, Jeremy ;
Nasrabadi, Nasser M. .
2018 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB), 2018, :1-8
[38]   An Improved Deep-Learning-Based Precipitation Estimation Algorithm Using Multitemporal GOES-16 Images [J].
Ma, Guangyi ;
Zhu, Linglong ;
Zhang, Yonghong ;
Huang, Jie ;
Liu, Qi ;
Sian, Kenny Thiam Choy Lim Kam .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
[39]   Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks [J].
Asfaw, Temesgen Gebremariam ;
Luo, Jing-Jia .
ADVANCES IN ATMOSPHERIC SCIENCES, 2024, 41 (03) :449-464
[40]   Improving Explainability of Deep Learning for Polarimetric Radar Rainfall Estimation [J].
Li, Wenyuan ;
Chen, Haonan ;
Han, Lei .
GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (11)