Carbonates in the Critical Zone

被引:18
|
作者
Covington, M. D. [1 ,2 ]
Martin, J. B. [3 ]
Toran, L. E. [4 ]
Macalady, J. L. [5 ]
Sekhon, N. [6 ,7 ]
Sullivan, P. L. [8 ]
Garcia, A. A., Jr. [9 ]
Heffernan, J. B. [10 ]
Graham, W. D. [11 ]
机构
[1] Univ Arkansas, Dept Geosci, Fayetteville, AR 72701 USA
[2] Karst Res Inst, ZRC SAZU, Postojna, Slovenia
[3] Univ Florida, Dept Geol Sci, Gainesville, FL USA
[4] Temple Univ, Dept Earth & Environm Sci, Philadelphia, PA USA
[5] Penn State Univ, Dept Geosci, State Coll, PA USA
[6] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI USA
[7] Brown Univ, Inst Brown Environm & Soc, Providence, RI USA
[8] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR USA
[9] James Madison Univ, Dept Geol & Environm Sci, Harrisonburg, VA USA
[10] Duke Univ, Nicholas Sch Environm, Durham, NC USA
[11] Univ Florida, Water Inst, Gainesville, FL USA
基金
美国国家科学基金会;
关键词
critical zone; carbonates; karst; groundwater; sinkholes; congruent weathering; GEOLOGICALLY RELEVANT SITUATIONS; REACTIVE TRANSPORT APPROACH; CALCITE DISSOLUTION; KARST AQUIFERS; LANDSCAPE EVOLUTION; WEATHERING RATES; EOGENETIC KARST; CO2; DYNAMICS; VADOSE ZONE; HYDROCHEMICAL VARIATIONS;
D O I
10.1029/2022EF002765
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Earth's Critical Zone (CZ), the near-surface layer where rock is weathered and landscapes co-evolve with life, is profoundly influenced by the type of underlying bedrock. Previous studies employing the CZ framework have focused primarily on landscapes dominated by silicate rocks. However, carbonate rocks crop out on approximately 15% of Earth's ice-free continental surface and provide important water resources and ecosystem services to similar to 1.2 billion people. Unlike silicates, carbonate minerals weather congruently and have high solubilities and rapid dissolution kinetics, enabling the development of large, interconnected pore spaces and preferential flow paths that restructure the CZ. Here we review the state of knowledge of the carbonate CZ, exploring parameters that produce contrasts in the CZ in different carbonate settings and identifying important open questions about carbonate CZ processes. We introduce the concept of a carbonate-silicate CZ spectrum and examine whether current conceptual models of the CZ, such as the conveyor model, can be applied to carbonate landscapes. We argue that, to advance beyond site-specific understanding and develop a more general conceptual framework for the role of carbonates in the CZ, we need integrative studies spanning both the carbonate-silicate spectrum and a range of carbonate settings.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Critical transition in critical zone of intensively managed landscapes
    Kumar, Praveen
    Le, Phong V. V.
    Papanicolaou, A. N. Thanos
    Rhoads, Bruce L.
    Anders, Alison M.
    Stumpf, Andrew
    Wilson, Christopher G.
    Bettis, E. Arthur, III
    Blair, Neal
    Ward, Adam S.
    Filley, Timothy
    Lin, Henry
    Keefer, Laura
    Keefer, Donald A.
    Lin, Yu-Feng
    Muste, Marian
    Royer, Todd, V
    Foufoula-Georgiou, Efi
    Belmont, Patrick
    ANTHROPOCENE, 2018, 22 : 10 - 19
  • [22] STYLOLITIC POROSITY IN CARBONATES - A CRITICAL FACTOR FOR DEEP HYDROCARBON PRODUCTION
    CAROZZI, AV
    VONBERGEN, D
    JOURNAL OF PETROLEUM GEOLOGY, 1987, 10 (03) : 267 - 282
  • [23] Concentration-Discharge Relations in the Critical Zone: Implications for Resolving Critical Zone Structure, Function, and Evolution
    Chorover, Jon
    Derry, Louis A.
    McDowell, William H.
    WATER RESOURCES RESEARCH, 2017, 53 (11) : 8654 - 8659
  • [24] Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability
    GEOMAR, Forschungszentrum für marine Geowissenschaften, Wischhofstrasse 1-3, 24148 Kiel, Germany
    不详
    Geology, 7 (647-650):
  • [25] The Intensively Managed Landscape Critical Zone Observatory: A Scientific Testbed for Understanding Critical Zone Processes in Agroecosystems
    Wilson, Christopher G.
    Abban, Benjamin
    Keefer, Laura L.
    Wacha, Kenneth
    Dermisis, Dimitrios
    Giannopoulos, Christos
    Zhou, Shengnan
    Goodwell, Allison E.
    Woo, Dong Kook
    Yan, Qina
    Ghadiri, Maryam
    Stumpf, Andrew
    Pitcel, Michelle
    Lin, Yu-Feng
    Marini, Luigi
    Storsved, Brynne
    Goff, Kathleen
    Vogelgsang, Jason
    Dere, Ashlee
    Schilling, Keith E.
    Muste, Marian
    Blair, Neal E.
    Rhoads, Bruce
    Bettis, Art
    Pai, Henry
    Kratt, Chris
    Sladek, Chris
    Wing, Michael
    Selker, John
    Tyler, Scott
    Lin, Henry
    Kumar, Praveen
    Papanicolaou, A. N.
    VADOSE ZONE JOURNAL, 2018, 17 (01)
  • [26] Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability
    Bohrmann, G
    Greinert, J
    Suess, E
    Torres, M
    GEOLOGY, 1998, 26 (07) : 647 - 650
  • [27] Progress in hydrogeochemical study of Karst Critical Zone: A critical review
    Zhou C.
    Zou S.
    Feng Q.
    Zhu D.
    Li J.
    Wang J.
    Xie H.
    Deng R.
    Earth Science Frontiers, 2022, 29 (03) : 37 - 50
  • [28] Multiscale geophysical imaging of the critical zone
    Parsekian, A. D.
    Singha, K.
    Minsley, B. J.
    Holbrook, W. S.
    Slater, L.
    REVIEWS OF GEOPHYSICS, 2015, 53 (01) : 1 - 26
  • [29] An arthroscopic evaluation of the anatomical "critical zone"
    Naidoo, N.
    Lazarus, L.
    Osman, S. A.
    Satyapal, K. S.
    FOLIA MORPHOLOGICA, 2017, 76 (02) : 277 - 283
  • [30] Pieter Hugo: The critical zone of engagement
    Law-Viljoen, Bronwyn
    APERTURE, 2007, (186) : 20 - 29