Large-Area WO3/BiVO4-CoPi Photoanode for Efficient Photoelectrochemical Water Splitting: Role of Patterned Metal Microgrid and Electrolyte Flow

被引:8
|
作者
Singh, Aditya [1 ]
De, Biswajit Samir [1 ]
Karmakar, Sujay [2 ]
Basu, Suddhasatwa [1 ,3 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Delhi 110016, India
[2] NTPC Energy Technol Res Alliance, NTPC, Greater Noida 201306, India
[3] CSIR, Inst Minerals & Mat Technol, Bhubaneswar 751013, India
关键词
heterojunction; oxygen evolution reaction; photoelectrochemical cell; lithography; patterned metal microgrid; VISIBLE-LIGHT; BIVO4; PHOTOANODES; COBALT PHOSPHATE; THIN-FILM; SCALE-UP; CELL; PERFORMANCE; FABRICATION; ABSORPTION; LOSSES;
D O I
10.1021/acsaem.2c04168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The WO3/BiVO4 heterojunction-based photoanodes have demonstrated great potential in the field of photo electrochemical (PEC) water splitting. The advancement in large area photoanodes is impeded due to the resistive loss of transparent conducting oxide (TCO) substrate, nonhomogeneity in the photoactive films, nonuniform deposition of co-catalyst, and pH gradient across the electrode. Herein, the patterned metal microgrid is sputtered under the WO3/BiVO4 heterojunction to reduce resistive losses and improve the uniformity of distributed potential in large-area substrates (5 cm x 5 cm). A good decoration of the photoelectrodeposited CoPi is obtained owing to the uniformity of the potential drop across the substrate with metal microgrid and electrolyte flow at rather high current densities (>2 mA/cm2). The patterned microgrid prepared by lithography-based micropatterning suppressed the loss of photoactive area. The combination of (i) metal microgrid with the large-area TCO substrate, (ii) synthesis of large-area WO3/BiVO4 heterojunction with high homogeneity, (iii) flow-induced uniform photoelectrodeposition of CoPi, (iv) and an engineered PEC cell design with electrolyte flow improved the photocurrent of large-area photoanodes. The simulation studies were performed to investigate the role of potential drop and electrolyte flow in the performance of large-area photoanode. The photoanode exhibited enhanced stability owing to the replenishment of the H+/OH- species near the electrode surface, facilitating rapid bubble detachment from the photoanode. The electrochemical engineering strategies resulted in an excellent photocurrent density of 2.8 mA/cm2 with a long duration stability of 80 h in a large-area photoanode. The study provides guidelines for implementing electrochemical engineering strategies to achieve enhanced PEC performance of large-area photoanode.
引用
收藏
页码:4642 / 4656
页数:15
相关论文
共 50 条
  • [1] Conformal BiVO4/WO3 nanobowl array photoanode for efficient photoelectrochemical water splitting
    Zhang, Wen
    Tian, Meng
    Jiao, Haimiao
    Jiang, Hai-Ying
    Tang, Junwang
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (09) : 2321 - 2331
  • [2] Triple Layer Heterojunction WO3/BiVO4/BiFeO3 Porous Photoanode for Efficient Photoelectrochemical Water Splitting
    Khoomortezaei, Sadaf
    Abdizadeh, Hossein
    Golobostanfard, Mohammad Reza
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6428 - 6439
  • [3] The photoelectrochemical properties of FTO/WO3/BiVO4/TiO2 photoanode for water splitting
    Shen, Huanyu
    Dawson, Graham
    Wu, Ying
    Cao, Fang
    Cheng, Xiaorong
    CHEMICAL PHYSICS, 2025, 588
  • [4] BiVO4-Dotted WO3 Photoanode with an Inverse Opal Underlayer for Photoelectrochemical Water Splitting
    Taga, Yuhei
    Pan, Zhenhua
    Katayama, Kenji
    Sohn, Woon Yong
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (05) : 5750 - 5755
  • [5] One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting
    Xu, Shang
    Fu, Dingfa
    Song, Kai
    Wang, Lin
    Yang, Zuobao
    Yang, Weiyou
    Hou, Huilin
    CHEMICAL ENGINEERING JOURNAL, 2018, 349 : 368 - 375
  • [6] 3D WO3/BiVO4/Cobalt Phosphate Composites Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting
    Zhang, Haifeng
    Zhou, Weiwei
    Yang, Yaping
    Cheng, Chuanwei
    SMALL, 2017, 13 (16)
  • [7] Fabrication of porous 1D WO3 NRs and WO3/BiVO4 hetero junction photoanode for efficient photoelectrochemical water splitting
    Madhavi, V
    Kondaiah, P.
    Shaik, Habibuddin
    Kumar, K. Naveen
    Naik, T. S. Sunil Kumar
    Rao, G. Mohan
    Ramamurthy, Praveen C.
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 274
  • [8] Bi electrodeposition on WO3 photoanode to improve the photoactivity of the WO3/BiVO4 heterostructure to water splitting
    Coelho, Dyovani
    Gaudencio, Joao Pedro R. S.
    Carminati, Saulo A.
    Ribeiro, Francisco W. P.
    Nogueira, Ana F.
    Mascaro, Lucia H.
    CHEMICAL ENGINEERING JOURNAL, 2020, 399
  • [9] Nanostructured WO3/BiVO4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting
    Su, Jinzhan
    Guo, Liejin
    Bao, Ningzhong
    Grimes, Craig A.
    NANO LETTERS, 2011, 11 (05) : 1928 - 1933
  • [10] Photoelectrochemical Water Splitting with ITO/WO3/BiVO4/CoPi Multishell Nanotubes Enabled by a Vacuum and Plasma Soft- Template Synthesis
    Gil-Rostra, Jorge
    Castillo-Seoane, Javier
    Guo, Qian
    Sobrido, Ana Belen Jorge
    Gonzalez-Elipe, Agustin R.
    Borras, Ana
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (07) : 9250 - 9262