On the strong laws of large numbers for pairwise NQD random variables

被引:0
作者
Shi, Jianan [1 ]
Yu, Zhenhong [1 ]
Miao, Yu [1 ,2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Strong law of large numbers; pairwise NQD random variables; general moment condition; identically distributed random variables; Marcinkiewicz-Zygmund strong law; CONVERGENCE;
D O I
10.1080/03610926.2023.2189498
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X,X-n,n >= 1} be a sequence of pairwise NQD identically distributed random variables and {b(n),n >= 1} be a sequence of positive constants. In this article, we study the strong laws of large numbers for the sequence {X,X-n,n >= 1} , under the general moment condition n-ary sumation (Sn=1P)-P-infinity(|X|>b(n)/ log n)< infinity , which improve some known results.
引用
收藏
页码:4745 / 4754
页数:10
相关论文
共 11 条
[1]   On complete convergence and the strong law of large numbers for pairwise independent random variables [J].
Bai, P. ;
Chen, P. -Y. ;
Sung, S. H. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :502-518
[2]   CONVERGENCE RATES IN LAW OF LARGE NUMBERS [J].
BAUM, LE ;
KATZ, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) :108-&
[3]   AN ELEMENTARY PROOF OF THE STRONG LAW OF LARGE NUMBERS [J].
ETEMADI, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 55 (01) :119-122
[4]  
Hu Shuhe, 2013, [Journal of Mathematical Research with Applications, 数学研究及应用], V33, P111
[5]   NEGATIVE ASSOCIATION OF RANDOM-VARIABLES, WITH APPLICATIONS [J].
JOAGDEV, K ;
PROSCHAN, F .
ANNALS OF STATISTICS, 1983, 11 (01) :286-295
[6]   SOME CONCEPTS OF DEPENDENCE [J].
LEHMANN, EL .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (05) :1137-&
[7]   A NOTE ON THE ALMOST SURE CONVERGENCE OF SUMS OF NEGATIVELY DEPENDENT RANDOM-VARIABLES [J].
MATULA, P .
STATISTICS & PROBABILITY LETTERS, 1992, 15 (03) :209-213
[8]  
Newman C. M., 1984, Lecture Notes-Monograph Series, V5, P127
[9]   On the Strong Convergence and Complete Convergence for Pairwise NQD Random Variables [J].
Shen, Aiting ;
Zhang, Ying ;
Volodin, Andrei .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[10]   On the strong law of large numbers for pairwise i.i.d. random variables with general moment conditions [J].
Sung, Soo Hak .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) :1963-1968